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I N T R O D U C T I O N

Ther naturar way of comprehension of the behavior of comprex. :
systems leads through their decomposition into components or
i:nits the governing laws of behavior of which are arready known,
foll-oweC by a subsequent reconstruction of the initial system by
rejo in ing these components.  fn many cases the adequate

.. mathematical modef can be obtained by employing the finite nunber

, ,of  conponents.  f . rom the mathemat ic ian's point  of  v iew, the
discret izat ion of  a cont inuous system can be carr ied.  out  in
seve ra r  a r t e rna t i ve  ways '  e . g . ,  emp loy i ng  t he  f i n i t e  d i f f e rence
technigues,  the weighted residua. Is,  employing the stat ionar i ty

condi t ions of  certa in funct ionars etc. ,  consider ing as a source
obj .ect  the di f ferent ia l  equat ions represent ing the system,s
beh_avior .  NevertheJ-ess,  f rom an engineer,s point  of  v iew an

.p.pproach containing a greater annount of engineering intuition is
of ten preferabre,  based upon an anarogy between the discrete

- el.ements and the corresponding parts of a considered domain. For
the t ime being a comon way to solve engineer ing problems of

.var ious nature has been estabr ished and calred by o.Zienkiewi tcz

a standard discrete problem sorut ion net .hod.  wi th appl icat ion to
mecl.anicar systems this method assumes establishing the
force-displacement rerat ions for  each structure erement,  and

. assembJ.ing structure from the elements employing force
egui l ibr ium condi t ions at  the nodes of  jo int ing .

The way to obtain discrete mathematicar moder-s has found its
perfect  representat ion as the f in i te erement method. computer
analysis of  a cont inuous dynamic mechanical  system, as a ru le,
d9."1."  wi th the discret izat ion in space as weII  as in t ime.

:  Hgwever '  in order to preserve the idea of  the standard discrete

,  problem, usual ly  i t  appears preferable to make an expl ic i t .

.  d ist inct ion between space and t . ime discret izat ion stages.
The matr ix  eguat ion of  mot ion of  a f in i te e lement st ructure

appears as a resul t  of  the space discret izat ion stage.  In the
dynarnie system analysis such a presentat ion has i ts  otd

. , . t radi t ion.  In the pre-computer t ime as weII  as nowadays a lot  of
ef for t  has been devoted t .o the anarysis of  the discrete one-mass

-.gr  several-mass modefs taking on account the mutuar st i f fness,



dissipat ive and other I inear or  nonl inear e lements.  The lbrge

var iety of  dynamic mechanical  systems can be represented in such

a vay,  involv ing a great  deal  of  engineer ing intu i t ion ; ind 
'  

a

proper comprehension of essence of the physical phenomena when

obtaining a model. The advent of computers and the finite elehient

techniques has presented a fomal. way for obtaining .compfiix

models of large dirhension and for carrying out their analyiis. On

the other hand, treating traditional and finite element rirodels

from a comon point of view enables to acquire a more profound

comprehension about the dynamic features of a mechanical systern.

For obtain ing the t ime Iaws of  mot ion of  a mechanical  system

numerical  and analyt ical  techniques can be employed. Since'  the

very formation of approximaLion technigues the minimum of rnamral

calculat ions producing suf f ic ient  accuracy was regarded as the

main ef f ic iency feature of  a method- Avai labi l i ty  of  comg;uters

nowadays has t ransferred the accent to the minimizat ion c i f

computer resource during the approximation techniques

appl icat ions.  This is  especia l ly  actual  when solv ing opt in izat ion

and synthesis problems reguiring to obtain the motion laws

repeatedly as well as in everyday engineering computations

enploying smal l  computers.

A computational effort can be reduced by developing

techniques in two ways.  Fi rst ,  the models of  sma.I l  d imension ard

at the same time preserving the adequateness of a model to th;

real system should be employed. On the cont.rary to the dire-ct

construct ion of  several  degree of  f reedom nodel ,  i t  appear6

preferable to consider as a source the f in i te e lemenL model  and

to develop the forma1 techniques for reducing the nurnber of its

dynamic degrees of  f reedom. on th is account the substruciur ing

techniques and other decomposi t ion approaches,  appl icabLe in i rost .

cases to the l inear systems, shoufd be ment ioned..  Neverthelessi

more research in th is f ie ld should be done regarding the

systemat izat ion and the development of  new approaches appl icaLl t !

to certa in c lasses of  nonl inear systems. The second way fdr

computat ional  ef for t  reduct ion is  to develop ef f ic ient  t ime

integrat ion schemes for  obtain ing the mot ion Iaws. A t remendous

contr ibut ion to the development and systemat ic presentat ion of

numerical  integrat ion techniques of  equaLions of  mot ion of  f in i t6 '

e. Iement st ructures has been made bv the scient is ts at  the

welJ ' -knovrn research centers guided by J.H.Argyr is,  K.J.Bathe,

.  O- Zienkiewi tcz -

. , The approximate analytical approaches to the structural

dynamic analysis have not yet reached the same degree of

perfec,tion, though the approximate techniques of a nonlinear

. .v ihfat ion theory have been developed and systemat. ical ly  presented

,.br,;."H.,H.ForoJr06oB, I0.A.MrlponoJlbcxr[ft, E.II.Ionoe, B.A-fKy6oBI4.],
,B.M,Crapxc,mciom, B.B.Boaouur,  E.H.Po3€HBaccep and oth.  A
development should be made applying existing approximate

, analyLical technigues taking on account specific features of

equalions of motion of large dimension and obtaining the mixed

,.anal.;.tical-numerical algorithms. The similar is to be pointed out:

_consider ing the structure mot ion contro l  problems. The case

oriented algorithms can be obtained on the . base of fundamental

research carr ied out  by H.H.Kpacoecxnn, JI .C. i1onrpnrrur ,

H . B , - E a u u v y x ,  @ . J I . t { e p u o y c b r o , , l - I . A K y J I e H K o , R H O.nrn  lnp

E"!1rY.:'rrm, B.A.Tpor,tr-u{r4fi, E.I].I lonoe, lI..U-Kpyrbxo, A-c.falE4JiJtrf i,
M -,P,..{igroBcKr,Ift -

This book carr ies out  the message of  uni f icat ion of  main

i i leas of  f in i te e lement dynamic analysis of  e] .ast ic  mechanical

systems and the theories of nonlinear vibration and control. The

developed techniques can be applied to the range of problems

encountered in the f ie lds of  mechanical  system design taking on

,qc.count the elast ic  v ibrat ion,  e.9. ,  when consider ing the

probJ.ems of employing the controlled elast.ic vibrat.ion of rigid

!g<ti,es and active vibrat.ing sysLems. The significance of such

prpblerns has increased in connection with the development of

precise v ibromechanics systems founded by K.Ragulskis,

J-Bansevid ius,  A.A.Epooeee, B-B., {aBpl t r {eHKo and oth.

The book consists of  an introduct ion an two parts.  The

i t r t roduc, t ion presents the construct ion diagrams of  several

l racl i l ignal  and or ig inal  v ibrodr ives,  the main features of  their

mathemat ical  models are discussed. In the f i rs t  part  a systemat ic

qpproach to the dynamic degree of  f reedom reduct ion,  obtain ing

the t ransient  and stat ionary mot ion laws and rnot ion controJ-

synthesis of  e last ic  st ructures wi th nonl inear interact ion.  The

second part  presents appl icat ions of  the developed techniques to

the analysis and synthesis of  v ibrodr ives- Fin i te e lement models

of  p iezoelectr ic  v ibroconverters and of  v ibrodr ives are obtained,

I



taking on account the rigid body motion of the deformable links.

The computed resul ts of  the real  systems are presented.

The first chapter presents the techniques for the dynaEic

reduct ion of  st ructural  models wi th large number of  d.o- f"  tq the

simpler  models wi th only several  dynamic d.o. f -  Such a t ransf ,grn

is always more or less reJ-ated with the loss of information,,1pgut

the dynamic features of the structure. The eguations of mgf,ion

are presented in the modal coordinates of the Iinear part of the

structure.  I f  the v ibrat ion f requency Four ier  components l ie .  , in
the lower range of the eigenfrequency spectrurn, truncation of

dynamic contributions of higher modes doesn'L cause signific4nt

errors. The techniques are applicable to linear structures and to

the structures wi th nonl inear interact ion points

The second chapter presents the technigues for obtaini-ng

the time laws of the linear structure motion or the Fourier

components of the dynamic response. As the main techniqueg....the

direct numerical int.egration in time is considered. S,gyF{if

nethods for obtaining the numerical schemes and the criteria

evaluating their asymptotic features are presented.

In the third chapter the linear structure numeric4l

i'ntegration techniques are extended in order to match the

nonlinear problems by means of the linearization of

nonlinearities or by iterating at each integration step- In the

case of  essent ia l ly  nonl inear st ructures wi th k inemat ic pairs

interacting by the normal, oblique impact and sliding friction

forces the numerical integration scheme is developed enabling to

take account of various normal contact and sliding friction force

character is t ics as wel l  as the impact  model  represented by the

coeff ic ient  of  rest i tut ion.  The scheme is presented as an

extension of  the general ized Newmark's scheme.

The fourth chapter presents the techniques for obtaining

per iodic stat ionary v ibrat ion laws and t ransient  v ibrat ion faws

with sJ-ow varying amplitudes of the high resonant quality

structures wi th nonl inear interact ion points.  In th is case di rect

numerical integration is hardly possible because of the large

number of  osci l la t ions unt i l  a stat ionary mot ion is  obtained.  The

presented semi-analyt ical  technigues enable to obtain stable as

weII as unstable rnotion laws, therefore it is necessary to check

their  s tabi l i ty  employing the stabi l i ty  cr i ter ia.

In the f i f th chapter  the techniques for  obtain ing the

programmed and closed-Ioop control laws of the elastic structural

deformation. The programmed control Laws are obtained employing

the optimun system control technigues, and the feedback control

is synthesized by soJ-ving the inverse dynamic problems- In both

cages';the dynarnic reduction techniques presented in the first

'8h[iitet are employed. The problem of exciting a prescribed
'ilioiiant 

structural vibration law is considered-

'  The s ixth chapter presents the f in i te e lement models of

; ' -p iezoelectr ic  v ibroconverters and v ibrodr ives- The re lat ions

'betwelen the mechanical, electrical and thermal phenomena are

':'cr:nsi€lered togrebher with the meciranical contact interaction

niodels- The presented dynamic equations take on account a rigid

body mot ion of  : rn e}ast ic  st ructure.  The dynamic cr i ter ia of  a

Vibrodrive are formulated.
' In the seventh chapter the techliques presented above are

'e lnplbyed for  the dynamic analysis of  v ibrodr ives and their

-6bi f rpbr ients,  v ibrat ion-contro l led k inemat ic pairs,  impact- f r ic t ion

'iibrations of vibroconverters. trptimal contro]- laws of

deformation motions of e1astic sltructures are obtained and

''optimat shape synthesis of vibroconverters and vibration

''concenl-ral-ors of complex vibrational motion laws is carried out.



CONSTRUCTION DIAGRAHS AND I" , , IATHEMATICAL HODELS OF VIBRODRIVES

In 1960-1970 a dr ive of  a new type was created.  I t  was based

upon the conversion of high frequency mechanical. vibrations into

direct ive mot ion.  Fol lowing the analogy wi th e lectr ic ,  pneumat ic

and hydraulic drives the new drive was named. a vibrationaf drive,

or  a v ibrodr ive (VD).

The operation principle of a VD is close to that of a common

class of  mechanisms convert ing v ibrat ions into d i rect ive mot ion-

This c lass inc1udes,  e.9. ,  ratchet-and -pawl gears,  id1e stroke

mechanisms etc. ,  operat ing at  a f requency below lkHz- v ibrodr ives

operate at a frequency from 2OkH.z and more. TI,le operating

frequency range is the main distinguishing feature between

vibrodrives and the traditional mechanisms converting vibratlons

into rotat ive or  l inear mot ion- The high f requency causes

gual i tat ive di f ferences in operat ion parzrmeters as we1l  as new

phenomena that  have not  been observed in mechanisns before [56] .

Maiden consLruct ions of  VD employed pr incip les of

Iow-freguency vibroconveyers. A diagram of one of the first and

mos t  s imp le  cons t ruc t i ons  i s  p resen ted  i n  F i g . l  [ 119 ] .  f t  i s  an

unreversal VD nith an active input link consisting of four

piezoelectr ic  p lates the eJ.ectrodes of  which are fed by the high

frequency voltage. The springs are emp1oyed for improving the

contact interact.ion between the input and output links. In order

to minimize energy diss ipat ion the center  points of  the plates

are employed for fixings because they coincide with the nodal

points of  odd v ibrat ional  modes.

The reverse motion of VD can be obtained by empfoying

bimorf ic  p lates and exci t ing their  longi tudinal  and f . l -exural

v ibrat ion.  A construct ion diagram of  such a \ /D is  presented. .  in

F ig .2  t 1191 .  r n  t he  b imo r f i c  p l a te  w i t h  pa r t i t i oned  e l eq t r c i dbs

the f lexural  and longi tudinal  v ibrat ions are exci ted

simul taneously,  a phase shi f t  between them being var ied by

adjust ing the input  vol tage.  I f  the phase shi f t  is  made equal  to

1800 by means of  a swi tch,  the reverse mot ion of  the output  l - ink

i s  ob ta i ned .

Improved operat ion character is t ics exhib i ts  the VD in Fig.3

t14B l .  I t  has  a  r o to r  2  cons i s t i ng  o f  two  t r unca ted  cones ,

piezoelectr ic  p lates 4 and 5 wi th the correspondingly t runcated

Fig.1 v ibrodr ive:  1 -  roLor l
2 ,3 ,  4 ,5  -  P i ezoe lec t r i c
plates;  6 -  sPr ings

A - A

Fig.3 Vibromotor:
1 - f r a m e ; 2 - r o t o r ;
3  -  d i s c ;
4 ,  5 -p i ezoe lec t r i c  p l a tes ;
6 -  d ie lectr ic  spacersl
7 -  addi t ional  v ibro-
converter l  8 -  mount;
9 - suppo r t ;  10 ,  1  1 - sc rews

Fig.2 Reversal  v ibrodr ive:
' l  -  p iezoelectr ic  p late;
2 - rotor;
3 -  vol tage converter ;
4 - switches

To the switgfi

F ig.4 Piezoelectr ic  v ibrodr ive
with the r ing v ibroconverter :
1 - f r a m e ; 2 - r o t o r ;
3-bear ing;  4-piezoelectr ic
r i ng ;  5  -  noun t ; 6 ,7 - s t r aps ;
8,9-eletrodes connected into
separate electr ic  c i rcui ts;' 10 - sw i t ch ;  11 -h i gh  vo l t age
source;  12 -  contact  e lements

b
l0

1 1
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Fiq .5  S teP-mot ion  v ib rodr ive :
" ' ' "  i - - 'ou tpu t  snar t i  2  -  2 '5 - -  connect ino  e lements ;

3 - open-roop' i i !"""r""t i ic r ing; 4 - naster shaft

:: i ' .  1

1 2

ends and an auxiliary piezoelectric vibroconverter(vc) 7. A high

frequency input voltage is applied simultaneously to the

electrodes of the two plates 4r5 and the VC 7. In the plates 4

.nd 5 the longitudinal vibration is excited by the input voltage

and the flexural vibration by means of the VC 7. The moving ends

of the plates cause the rotation of the rotor as a result of the

dynamic contact interaction.

The construct ion diagrarn in Fig.4 [149I  presents a reversal

VD employing a ring piezoelectric VC with partitioned electrodes.

A high frequency voltage is transferred through a switch 10 to

the electrodes. In the piezoelectric ring 4 standing waves are

excited and the attached contact elements move along elliptical

paths. The interaction between the contact e1ernents and the rotor

resuJ.ts in its rotational movement- The motion is reversed by

means of  swi tching into the posi t ion 11.

A step-mot ion VD is presented in Fig-5 11471- I t  consists of

the output shaft 1 made as a metallic ring rigidly connected by

means of the element 2 with one end of the open-Ioop

piezoelectr ic  r ing 3.  The second end of  a p iezoelectr ic  r ing is

connected rigidly with the shaft 4 by means of the element 5. The

VD operates as f<-rllows. The Fa:jtF-: *-haft 4 roL:tes with a

theconstant angnrlar velocity or. If no vol-tage is applied to

open-loop piezoelectric ring 3, the output shaft t has the

rotaLion velocity. wtren a voltage pulse is applied, the

contracts and submits the output shaft 1 the velocity pulse

T'he total velocity of the output shaft now eguals u'= .n*

When o' reaches its maximum value, a negative voltage pulse

appl ied to the r ing 3 resul t ing in a negat ive veloci ty  pulse

of the output shaft that reduces the total velocity value

zera-

same

ring

o .
z

o .
z
i s

A reversal  VD in Fig.6 t '1521 contains a f rame 1,  a

cylindrical rotor 2 in bearings 3, and a metallic concentrator 4

wi- th three piezoelectr ic  VC 5,6,7 at tached to i ts  end face and

held down by a bolt 9 together with a passive strap 8. The VC

516,7 are fed f rom the vol tage block 11 through the phase-shi f t

c i rcui t  10- The moving end of  the concentrator  4 contacts wi th

the inner surface of the rotor 2, the other end being attached to

frame 1 by means of the elastic plate 1 2 by the bolts 1 3. The

vol tage is  appl ied to each VC 5,6,7 wi th the phase shi f t  600,  and

@
3

to



f lexural  v ibrat ions are submit ted to the concenLrator  4.  I ts

moving end fo l lows a c i rcular  path and causes a rotat ion of  the

rotor  2.  The rotaLion d. i rect ion is  reversed by revers ing the
v o I t a g e  p h a s e  s h i f t .

The  VD  i n  F i g_7  [ 150 ]  cons i s t s  o f  a  r i g i d  r o to r  1 ,  e l as t i c

element 2 made as a steel  r ing coaxia l  wi th the rotor  1.  The

bear ing axes wi th the piezoelectr ic  r ing v ibroconverters 5 f . ree

arranged in a gap between the rotor  1 and the r ing 2 are mounted

on the immobi le support .  3.  The VC are fed by a high f reguency

vol-Lage through a phase-shi f t  c i rcui t .  Wi l -h in the r ing 2 the

bear ing element 6 is  arranged.

The v ibrodr ive operates as fo l lows.  A hiqh f requency

vol tage is  suppl ied consequent ly t .hrough l -he phase shi f t  c i i tcui t

to the VC 5 exci t ing the radia l  as wel l -  as the t .angent. ia l

v ibrat ion.  fn the elast ic  rotor  2 a t ravel- ] ing wave is exciLed

causing the rotat ion of  the VC on their  axes 4 and in their  curn

causing a rotat ion of  t -he rotor  1.  This construct ion enables to

obtain an increased torque value in compar ison wi t .h VD employing

beam and plate vC, owing to the larger deformat ion forces of  the
cyl indr ical  vc and their  combined parLic ipat ion when t ransferr ing

a.  torque f rom the elast . ic  e letrent .  2 to the rotcr  . l  
.

The dist inguishing feaL.ure of  the above presented

construct ions appears to be the employment of  resonant v i ,brat ions
of  an input  1 ink,  because only in the v ic in i ty  of  resonance the
suf f ic ient ly  large values of  ampl i tudes are obtained.  As a

shortcoming of  such YD appears the narroH range of  operat ing
frequencies because of  a large value of  the nechanical-  e- factor
of  a VC. In order to obi :a in the suf f ic ient fy Iarge values of
ampl i tuc les ernploying a nonresonant v ibrat ion the packages of
v ibroconverters are employed. In Fig.8 the construct ion diaqram

o f  s u c h  a  v i b r o d r i v e  i s  p r e s e n t e d  [ 1 5 1 ] .

I he  VD  cons i s t s  o f  a  VC  package  1 ,  whe re  t he  po la r i za t i on

vectors of  neighbor ing VC have the opposi te d i rect ions.  One end

face  o f  a  package  i s  a t t ached  t o  t he  bas i s  2 ,  and  t he  o the r  one

to the bar 3 that  in i ts  turn at  one end is  connected by a c lamp

w i th  t he  bas i s  2 ,  and  a t  t he  o the r  end  w i t h  t he  rod  5 .  The  rod  5
i s  f i xed  i n  can t i l - eve r  on  t he  bas i s  2 ,  and  i t s  f r ee  end  i s

aLLached  w i t h  t he  mov ing  l i n k  6 .  The  i n t eg ra t i ng  c i r cu i t ,  cons i s t . s

o f  two  h i gh -vo l t age  ga tes  7  and  B  and  two  res i s t ances  9  and  10 .

12

6
9

Fig-6 Reversal-  v ibrodr ive:  1 -  f ramel 2 -  rotor ;  3 -  bear ings;
4 -  concentrator ;  5-7 -  p iezoelectr ic  v ibroconverters;
8  -  pass i ve  s t r ap ;  9  -  t i gh ten ing  sc rew l  l 0  -  phase_sh i f t .
c i r cu i t ;  11 - voJ - t age  sou rce ;  12 -e l as t i c  p l a te ;  l 3  -  s c rews

A .  A - A
i -

;{
A N

-Fi .g-7 Vibrodr ive:  1 -  rotor ;  2 -  e last ic  e lement;  3 -  immobi le
support ;  4 -  bear ing axesl  5 -  p iezoceramic r ing
vibroconverters;  6 -  bear ing element

A - A
-fA
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Fig.8a- Vibrodr ive:  - l  -  v ibroconverter  package; 2 -  basis;
3 -  bar;  4 -  c larnp;  5 -  rod;  6 -  moving l ink;  7,8 -
h i gh  vo l t age  ga tes ;  9 ,10 - res i s t ances ;  11 -h i gh  vo l t age
source;  

-12-t r igger;  
13-al ternat ing vol tage source;

b -  H i g h  v o l t a g e  g a t e :  1 9 , 2 0 -  r e s i s t a n c e s l  1 6 , 1 7 , 2 1  -
windings of  the pulse t ransformer 18;  14,1S-transistors

Fig.9 Beam def lect ion uni t :  1,2 -  p iezoeJ-ectr ic  p lates;
3 -  f rane;  4 -  ref lector ;  5-10 -  external  e lectrodes;
11 -16  -  i n t e rna l  e l ec t r odes ;  17  -  con t ro l  b l ock

The piezoelectr ic  package 1 is  connected e1ectr ical ly  wi th the

high-voltage gates 7 and 8 whose out.puts are connected with the

outputs of  the high-vol tage source 1 1 through the resistances 9

and 10,  and the contro1J.ed inputs -  wi th the di rect  and inverse

outputs of  the t r igger 12 of  the contro l  c i rcui t .  The input  of

-  .  . the t r igger is  connected to the al ternat ing vol tage source 1 3.

.  Fhe high vol tage gates 7 and 8 consist  of  the t ransistors 1 4 and

*-..,'I5 connected in sequence. Between the enitters and bases of the

.  Uransistors the secondary windings 1 6 and 17 of  the pulse

transformer 18 are connected,  and between the emit ters and

colJ.ectors there are the resistances 1 9 and 20,  the contro l led

input  of  the gates 7 and I  being connected to the pr imary winding

of  the pulse t ransformer 
-18.

The VD operates as fol1ows. When vibrations of the rod 5 are

excited by the piezoe.Iectric package 'l through the bar 3, it

in teracts wi th the moving I ink 6 in i ts  turn causing the

excitation of flexural vibrations in the rod 5. A proper

adjustment of  the v ibrat ion phases enables to obtain an ef f ic ient

operation law of the VD by transferring vibrations from the

piezoelectric package 1 to the rod 3 with the minimum loss of

energy. The appJ.ied voltage is of the order of hurdreds of volts,

and the v ibrat ion ampl i tude reaches the va1ue of  1 00! .  The

fai lure of  the piezoelectr ic  package is prevented by the c lannp 4

and the rod 5.

The v ibrat ion of  the piezoelectr ic  package 1 is  exci t .ed as

fol lows.  The high-vol tage gates 7 and 8 are swi tched

electronical ly  by means of  pulses in the contro l  c i rcui t .  I t

enables to adjust the vibration frequency of a package in ord.er

,'-1 to coincide with the resonant frequency of the flexural vibration
'  .of  the rod 5 and to increase the mechanical  ef f ic iency of  the VD.

;r  !  ,  The pulse vol tage is  t ransferred f rom the al ternat ing

-- . .burrent  source upon a countable input  of  the t r igger 12 and

reverses i t .  The s ignal  f rom the di rect  and inverse outputs of

the t r igger 1 2 is  t ransferred to the contro l  inputs of  the gates

7 and I  and reverses them al ternat .e ly-  As a resul t  the

piezoelectr ic  package is a l ternately swi tched to the resistors 9

and 1O compris ing an integrat . ing c i rcui t .  On i ts  output  the

exponent ia l ly  vary ing vol tage is  obtained.  As the exci tat ion

frequency is  considerably lower the the f i rs t  resonant f requency



of the package 1,  stat ic  e lectr ical  capaci ty prevai ls .  The

package is charged and uncharged from the high voltage source 'l 1

through the keys 7(8)  and the resistor  9(10) of  the integrat ing

c i r c u i t .

The above mentioned construction exannples are presented .in
order to indicate at a wide variety of possible constructional

solutions and to point out at typical features of VD rather than

to make a a comprehensive overview. Therer are a lot of otfrJr

mechanisms employing the controlled elastic deformation drta

v i b ra t i on .  A  beam de f l ec t i on  un i t ,  F i g .9  [ 119 ] ,  emp loyes  t he

possibility of the flexural deformation control in bimorfic

piezoelectr ic  e lements-  This uni t  enables to increase 5n

operation speed and precision of the scanning and simultaneously

to simp.l.ify the construction and to reduce its weight in

compar ison wi th the convent ional  ones.  Fig.11 shows the

construction diagram of the unit and the sectional views. The

piezoelectric plates 1 and 2 are rigidly connected. into the

bimorfic element and fixed into the frarne 3 by one of its ends.

At  the other end the ref lector  4 is  at tached. The external  5-10

and the internal  1 ' l -19 electrodes are connected electr icat ty wi th

the contro1 b1ock 17-

The unit operates as follows. ff the control voJ-tage is

appJ. ied at  the electrodes 5,6,1 ' l  and 12 ,  one of  the plates

elongates and the other shortens causing the bending of the

bimorfic element in the plane XOY. ff the control voltage is

appl ied at  the electrodes 7-10 and 13-16,  the bending of  the

bimorfic element in the plane XOZ is obtained. These flexural

motions cause the angular motions of the reflector 4 proportional

to the magnitudes of the applied voltages.

Mathematical nodels of VD. Many of VD are obtained by

modifying the traditional vibroconveyers by increasing their

operation frequency severa1 hundred times. However, at ultrasonic

operat ing f requencies the elast ic  resonant v ibrat ion and elast ic

wave phenomena take place. The amplitudes and phases of the

points of a VC differ from each other depending upon the form of

standing or travelling waves.

The measuring and experimental investigation of the

vibrations in the active links of VD is complicated because of

very smal.J. annplitudes and high vibration frequencies. The

experimental investigation can be carried out by means of an

inter ferometr ic  holography.  Fig. ' l0a presents a resonant v ibrat ion

hologran of the piezoelectric cylinder employed as an input Iink

of a VD (vibration freguency = 24OOO}Jzl. The vibration mode has

,thlee 
atandlng cl-artlc weve! elong e c''lcr:rrforonce and one hall

. , !5 
t t t "  wave along the height  of  the cyl inder-  Fiq. lOb presents

the computed wave form. During contact interaction the elasticity

of the contacting pairs is of great importance, too. The duration

of  the contact- impact  interact ion comprises a greater  part  of  the

_.v ibrat ion per iod,  and in some cases contact ing points don' t .

-.separate at aJ.J.. Consequently, deformations of the contacting

,_qurface and s l id ing f r ic t ion forces are to be taken into account.

,'Vibrodrives are separated into point-contact and surface-contact

classes according to the way how the cont.act surface is deformed.

In point-contact VD a contact interaction takes pJ-ace only in

i iscrete points by means of  contact  e lements at tached to an input

I ink, local. contact phenomena being assumed independent at each

. .contact  point .  rn the surface-contact  VD their  t inks contact

along continuous parts of their surface.

The above ment ioned consideraLions suggest  the insuf f ic iency

of ernploying J-umped parameter mathematical models for presenting

the dynamic equations of VD. The adequate mathematical model-s of

VD can be obtained ernploying the finite element techniques

.enabl ing to present a dynamic behavior  of  e last ic  I inks of  a

gr.eat  var iety of  vD conf igurat ions (Fig.1 1 )  by means of

structural dynamic equations. The dynarnic behavior of a VD as of

a who1e is obtained by adding nonl inear terms and uni lateral

constra ints upon displacements and ve. loci t ies of  nodal  points of

a model. In general, the dynarnics of VD is governed by the system

' r  i l

M  U  +  C  U  +  K U  =  w r u - i l l  r  R ( t )  -  P ' r .  -  P r x\ v ' v l  t  r \ \ w /  . x ' ' u  . T ' - T  '

D TT < rl
r N v  -  u  t

( a )

( b )

a y  +  PrU =  O ,  in  the  case o f  ac t i ve  cons t ra in ts  (b ) , (c )

J v + b v , = a x ' + M  ( d )

l x ,  l  <  k r x *  ,

x * ) 0 ,

( e )

( f )

1 8

1 9



where M,C'K - mass, damping and stiffness matrices of the model,

U - nodal displacernent vector,

R(t)  -  exci t ing force vector ,

P* - constraint matrix defining the constraints in the

direction normal to the contacting surfaces,

d - vector defining initial clearances between the

contact points of an input J-ink and the surface of

an output link,

arP, - matrices, in a no-sliding case defining the

constraints upon the velocities in the

direction tangential- to the contacting surfaces,

XN,trr- normal and tangential components of the contact

forces,

rp - angular or linear displacement of an output link (in the

case of  several  d.o. f .  of  an output  l ink -  d isplacement

vec to r ) ,

J - mass or moment of inertia of an output link,

b - fluid friction coefficient,

M *r- external force nonent or external force applied to an

output link,

k, -.Coulonrb friction coefficienL,

f(UrU) - term accounting for other nonlinear interaction

forces and the nonlinear features of a structure.

The main difficulties of the computer analysis of the above

mentioned model are due to its essential nonlinearity, large

dimension and a necessity to compute during tine intervals

consisting of a large number of vibration periods- A thorough and

comprehensive analysis of the dynamic eguations is possible only

if corresponding effective techniques and software is available.

The techniques based upon the direct integration of the equations

of motion and the time-averaging approach together with the

structural displacement control synthesis al.gorithms are

presented in the first part of this work- The second part

concentrates upon the finite element models of VD and the

analysis of computed results obtained employing the techniques

presented in the first part.

o

Fig.10a- Resonant v ibrat ion hologram of 'a p iezoelectr ic

cyl inder 
" i ; ; ; ; ; ; ; " t ier-  

(v ibrat io i r  f requencv --24000H2)

b- computed t;;;i;; wave shape of the 116 part of the

cYlinder
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2 1
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P a e r 1 .  T E C H N I O U E S

The displacenent approach of the finite elernent method

produces for both the continuous mechanical systems and those

with lumped parameters the uniforn model equations of motion

M U +  C  U + K U =  g ( U , U )  + R ( t ) ,  ( x )

where M,C,K -  matr ices of  the elast ic  st ructure,  R(t)

exci t ing force vector ,  F1U, i I ;  -  nonl inear force vector .

For obtain ing the mot ion 1aw U(t)  the equat ion (*)  is

integrated directly in time or, alternatively, some anal.ytical-

approximations are enployed.

Up to this time the great experience has been obtained in

the fie]-d of the linear and nonlinear mechanical vibration

analysis [88,89] .  As a ru le,  exact  or  approximate analyt ical

approaches had been adopted successfully to the systems with only

several  degrees of  f reedom (c l .o- f - ) ,  in  remaining cases employing

nunerical or semianalytical. technigues.

Obtainingr the transient response of the structures with a

large nu.nrber of d.o.f. is expensive and requires great amounts of

computational resource, therefore the efficient direct

integration algorithms are necessary. There are a lot of

case-oriented algorithrns enabling to obtain the necessary

features of accuracy, stability etc. of the numerical schenes

146,25,43,81.  The l inear system integrat ion schemes can be

successfuJ.1y adopted to nonlinear cases by means of the

I  . l inear izat ion dur ing an integrat ion step or  by soJ.v ing a

i ,. ,, ncjnlinear algebraic equation at each time station [ 1 ] . Ttrere is
' 

,'.*'ici"need to regard both single-step and multi-step numerical
' - 

"*schemes because the relations transforming the numerical scheme

from single-step form to nulti-step and vice-versa have been
'establ ished 

(e.g. ,  the wel l -known Houbol t  and Wi lson schemes can

be der ived f rom the general ized Newmark's method [46,25])-

The stat ionary mot ion laws of  e last ic  st ructures as wel- I  as

the transient ones can be obtained by the direct integration of

the eguations of motion. ff the damping forces are present, the

transient motions taking place after an external force

F i9

vt

U

.11 Fin i te e lement models of  v ibrodr ives:
a,b - with piezoelectric rod vibroconverters
c -  wi th cyl indr ical  VC; d -  wi th r ing VC;
e - with disk VC and rod concentrator

( v c ) ;

2 2
2 3



predominate

the dynamic

IMU+KUl * lCU l
a r i t hme t i cs .

app l i ca t i on  upon  a  s t r uc tu re  cease  a f t e r  a  ce r t a i n  t ime  i n t e r va . I

t*  .  The mot ion law af ter  the t . ime point  t*  can be reasonably

regarded as stat ionary.  Unfor tunately,  for  the structures wi th

high values of  the mechanical  Q-factor  (h igh-qual i ty  resonant

structures) such an approach is  very inef f ic ient  and can even

produce incorrect  resul ts because of  a very Iarge number 
'of

integrat ion steps unt i l  the stat ionary mot ion law is obtaineo.  i r r

some cases even the existence of  a per iodic mot ion at  a g iven

exci tat ion l -aw remains unclear.  As a pr incipal  source of  the

rounding-of f  errors appears the essent ia l  d i f ference between the

magni tudes of  conservat ive and diss ipat ive members in the

equat ions of  mot ion.  The inert ia force Mt j  and eJ-ast . ic  force KU

t he  d i ss ipa r i ve  f o r ce  CU,  [ v f t i 1>>1CU; ,  lK l ] l >>1CU1,  p ,+ t
equi l ibr ium requirenent impl ies the re lat iorr

, resulting in poor accuracy of l-he complrtr:r:

There are several approaches enabling to avoid or to rettu:c

t h e  d i f f i c u l t i e s  m e n t i o n e d  a b o v e  [ 4 9 , 5 1 , 3 0 , 1 3 1 , ' 1 4 2 , 1 4 5 ] .  A s  a

rule,  they can be adopted di rect ly  to the structures wi th only

several  degrees of  f reedom. Regarding the large structures,  some

development is  necessary.  The analysis of  stat ionary mot ion laws

in t ime domain can be carr ied out  by f inding the zero values of

some algebraic funct ion obtained by integrat ing di rect ly  the

equa t i ons  o f  mo t i on  [ 137 ,101 ,281 .  I n  t he  f r equency  doma in  t he

nonl inear harmonic balance equat ions are obtained,  and the use of

the averaging techniques enables to investigate transient mot.ions

in terms of  s low-vary ing ampl i tudes [  63,  30,  1 21 ]  .  In t  63 1 the

cornbined harmonic balance and di rect  integrat ion approach was

appl ied to the structures wi th local  nonl inear i t ies.

An important  cfass is  comprised by the systems wi th

kinemat ic pairs interact ing by the normal ,  obl ique impact  or

s l i d i n g  f r i c t i o n  f o r c e s  [ 1 3 3 , 1 0 7 , 1 0 8 , 5 0 , 5 1 , 1 2 2 ] .  C o n s i d e r i n g  t h e

numerical  analysis or iented formulat ion,  in p lace of  the

comprises the essence of  the synthesis problem. On one hand, i t

cpn be approached as the optimal shape design probfen

I 5 2 , 1 4 , 1 3 9 , 1 2 4 , 1 2 7 1  o r  t h e  m a t e r i a l s  w i t h  t h e  n e c e s s a r y

mechanical  propert ies can be employed in order to obtain the

desirable dynamic response t31 l .  On the other hand, act ive

cAn tFo l  ne thods  can  be  adop ted  [ 95 ,109 ,11O,1127 .  The  p resc r i bed

S,etigns of the mechanical structures can be obtained by employing

t h e  g e n e r a l  o p t i m a l  c o n t r o l  t e c h n i q u e s  [ 3 9 , 1 1  4 , 1 4 3 , 1 4 1 , 1 1 8 ]  -

In [65,78]  the t ransient  st ructural  v ibrat ion programed

control  synthesis a1gor i thm is presented.  A genera).  approach to

the c losed Ioop contro1 synthesis is  presented by the dynamic

programming meLhod, the use of  which is  restra ined wi th the

sys tems  w i t h  seve ra l  d . o . f .  t 9 ] .  The  mos t  common  way  t o  ob ta i n

the c losed loop contro l  system is to employ the automat ic contro l

Lec l r n i ques  1A7 ,102 ,1091 .  The  t echn iques  based  upon  t he  i nve rse

dynamic problem solut ion are appl icable,  too [  93,  1 1 5,  1 29,  80 ]  .  In

th is case the synthesis is  carr ied out  on base of  the general

statements def ined by symmetry considerat ions.  I t  has been shown

that the properties of the obtained control laws are fully

ident ical  to those obtained by employing c lassical  methods of  the

contro l  theory based on the nin imizat ion of  guadrat ic  funct ional

l 1 1 s l .

nonf inear force term 9(U,U) t i re

L=1  , ? ,  .  .  .  a re  emp loyed  and

integrat ion and t ime-averaging

t  6 0 - 6 3  l

constra ints  PU s do,  t ' i i=q,
the case or iented numerical

techniques are to be developed

Obtain ing a system wi th the prescr ibed dynamic features
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1. DV\AMIC MODELS AND THEIR REDUCTION

rhis chapter presents the techniques for reducing the number

of  dynamic degrees of  f reedom of  e last ic  st ructures wi th

nonl inear i t ies.  For the l inear st ructures,  the mass condensat ion

and the higher mode dynamic contribution truncation approacnes

are possib le.  In I  nonl inear st ructural  anal-ys is the mocle!

equations are represented in modal coordinates of the linear part

of the structure or in modal coordinates of the structure

I inear ized at  the solut ion point ,  wi th subsequent t runcat ion of

dynarnic contributions of higher modes. The alternative approaches

are based on identification techniques for obtaining a- reduced

set of  dynannic equat ions-

The or ig inal  resul ts presented in th is chapter  consist  of

the development of the dynamic contribution truncation method

appl ied to the elast ic  st ructures wi th uni lateral  constra ints

upon their di.splacements and velocities. The model equations are

represented in nodal .  coordinates of  the Linear structure,  and as

a result, a low-dimension equation system with the nonJ-inear term

is obtained.  This approach is  d i rect ly  appl ied to the structures

with the impact  and s l id ing f r ic t ion interact ion points.  I f

simultaneously the dynannic and dissipative contributions of

higher modes are truncated, the nonlinear term represents a force

created by an elast ic  spr ing of  unid i rect ional  act ion.  f f  Lhe

dissipat ive contr ibut ions are reta ined,  a unid i rect iondl

dissipative element and a spring are rerpresented by this

nonl inear term.

1 .1 REDUCTTON OF I,INEAR STRUCTURAL EQUATIONS

The mass condensat ion approach.  The considerat ion is

restr ic ted wi th in the range of  e last ic  st ructures wi th

proport ional  damping presented by the matr ix  equat ion of  mot ion

M i i  + c U + K U = R ( t ) ( 1  . 1  )

where M, K,  C = qM + FK -  mass,  st i f fness and damping structural

matr ices U, R - .  nodal  d isplacement and external  force vectors.

The early approaches to the reduction of the num-ber of dynanic

deg rees  o f  f r eedom (d .o . f - )  o f  t he  equa t i on  (1 .1 )  t r ea ted  some  o f

them as the master d.o. f .  and el iminated the remaining ones f rom

(1 .1  )  t 13 ,19 ,271 .  Such  a  r educ t i on ,  ca l l ed  dynam ic  condensa t i on ,

was obtained by present ing the equat ion (  1 .1 )  as

l f e re  "2 "  i nd i ca tes  t he  mas te r  d .o . f .

External forces are assumed to be applied only to the master

d .o . f - ,  i . e . ,  R r=  O .  r n  t he  case  o f  ha rmon i c  ex te rna l  exc i t a t i on

Rr€' -" ,  we cast  the problem into f reguency domain and represent

the resul t ing not ion law as Ue"-"  .  g l i th no damping (  Q=Q l ,  the

algebraic equation for obtaining the amplitudes appears as

f 'n.1"n'"1 f Y'l - f c"c"l f Y'l * f *" K"l f u' l = f ol (1.2)
t ,ur,ir,,l L u,l L .",.""1L u,l L *,, *""1 L u"l L o,l ,

D , ,

D , ,
( 1  . 3 )

<1 .7>

( 1  . B )

D"l I u'l
o"l L u'l =

ol
I

P I
"2J '

*n"."  D = K -  . "M is the dynamic st i f fness matr ix .

The ef fect ive dimension of  the system is reduced by

rearranging it to the form

n x  T T  =  p  
,  < 1 . 4 )" 2 , . 2

r i l re re  Dx =  D"" -  Dr rD; lDr "  (1  .5 )
- 

The matrix M* co.t"=ponding to the dynarnic matrix D* is

obtained by the relat ion [27]

a
, r *  n x  ^ - 1 r .  , .  ^ - 1 ^  ^ - 1 r .  ^ - 1 ^M - =  -  

^ ,  
" , D - - =  

M = r - D z r D r r M r . - l { r r D r  r D r . * D r r D r r M r r D r  r D r "  ,  ( 1  . 6 )
o ( o  )

i l .  I

qnd the matrix K* - by the relation

, r X  n X  2 r ,
1 \ = l - r + o l Y l

Final ly ,  the reduced equat ion appears as

1 K - - 2 M 1  u z = O

I t  i sn ' t  a  s imp le  t ask  t o  so l ve  (1 .8 )  ,  because  t he  ma t r i ces

K*, M* depend upon the freguency o . rn order to find the value

of  the . Iowest  e igenfrequency,  t .he equat ion (1.8)  is  solved

2 6
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i t e ra t i ve l y .  A t  t he  i - t h  i t e ra t i on  t he  ma t r i ces  K*1 . ; ,  M*1 .1  a re

obLained by subst i tut ing the value o(  
!  -1 )  

obtained at  the

( i - ' l ) - t h  i t e ra t i on ,  I 271 .  As  an  i n i t i a l  es t ima te  Lhe  va lue  - t o ' =0

is regarded- The s impl i f ied approach to the mass condensat ion

considers the approximate values of  the matr ices K*= K*(O),

M*=M* (O) .  r n  t h i s  case  t he  re l a t i on  (1 .6 )  i n  p l ace  o f  D  emp loy - s  K ,

and the reduced eguation is obtained as

M*ii"+ c*u"+ K*ur= pr111

We present the vector  of  squares of e igenfrequencies

and the matr ix  of  e igenvectors as a = [at  'a '  I  '

submatrix A2 and the subvector ol correspond to the

modes.  Af ter  the t runcat ion,  the equat ion (  1 '  1 )

cooidinates takes the forn

f,s l

tr
::"

moda

s a s

wher

tru

in

2 l
1 l
' l
2 )

the

ted

,daI

I T  -- 1

The shortcomingr of the sinplified approach is that the

obtained results can significantJ-y depend upon the proper

select ion of  master  d-o. f .  thus requir ing a great  deal  of

engineer ing intu i t ion.

Represent ing in the subspace of  modal  coordinates.  I t  seems

more natural  to reduce the ef fect ive number of  d.o. f .  by

presenting the eguation of moLion in modal coordinates ?4d

truncating the dynamic contributions of higher modes,

eigenfreguencies of  which are remote to the expected v ibrat ion

f requency  (e .g . ,  subs t ruc tu re  syn thes i s  r ne thod  t 38 l  )  -

Simul taneously an account of  the remaining quasistat ic  st ructural

compl iance of  the dynamical ly  t runcated modes is  to be taken.

Cons ide r  t he  s t r uc tu ra l  equa t i on  o f  mo t i on  (1 .1  )  w i t h  : t he

proport ional  damping,  i .e. ,  C = aM + €K as a resul t  of  solv i4g

the eigenproblem

( K - . ' M ) U = 0 ,  ( 1 . 1 1 )

the eigenfreguencies . . ,  i=f f i  and the eigenvectors,  ordered as

columns of  the matr ix  A,  are obtained.  The t ransfer  to modal

coordinates is  carr ied out  ernploying the subst i tut ion [44]

I J = ^ z  ( . 1 2 )

i .+ oiagl.]; z, = ar R,

d iag( . '1  z .  = t '  R,

( 1  . 1 3 )

where diag( Fr) ,  d lag( ' l>,  a:-ag(- ' r )  c lenotes the diagonal  matr ices

contain ing the vectors Pr,  q,  anct  t " "  on their  main diagonaLs'  ancl

t he  equa t i t i e s  d i ag ( r , 1=a l ca , ,  d i ag ( ' ] l =a l f  A r '  d l ag ( . ' r ) =a ] xa '

; a re  he ld .

The sYstem (  1 .1 3 )  is  the reduced one wi th regard to the

or ig inal  equat ion (  1 '  1 )  '  The dimension of  the f i rs t  equat ion of

( 1 .13 )  i s  t be  same  as  t he  l eng th  o f  t he  vec to r  Z r '  F rom the

second eguat ion of  (1 '13) the quasistat ic  correct ion caused by

the remaining structural compliance of the truncated modes is

obtained.

I t  should be not iced,  that  formal ly  (1 '13) can be obtained

' i n  p l ace  o f  ( 1 -12 )  enp loy i ng  t he  subs t i Lu t i on

u = a r Z r  * a r z r = a l z r + f r  u =  o t L r , i i = o r l ,  ( 1  ' 1 4 )

.  Up to now i t  was assumed, that  a l l  the structural  modes are

obtained.  In fact ,  i t  isn ' t  necessary to determine the higher

2  - ,
- r todes az,  az exprrc i t ly '  By mul t ip ly ing the f i rs t  re lat ion of

r . ( ' i : 14 )  uy  a lK  and  bv  a lK  on  t he  l e f t '  z t a r , d  zz  a re  exp ressed  f r om

the obtained re lat ions as

( 1  . e )

transforma-

I  t  i ,  + diag( r .)

Iwhere Mx = TrM

t ion matr ix  T =

The value

, K* = TtK T with then  n x  - ' n T n  . n

r - (  -K  I
|  

- - 1  1 - - 1 2  
|

l r  I
U, is  obtained from the rel-ation

. - -  1  - -
[ r r h r " u r ' ( 1 . 1 0 )

z r = d i a g ( 1 / - z

z, = dig( 
1/uz

B y  m u l L i P l Y i n q  ( 1 . 1 5 )  b Y  a r ,  a n d

( 1  . 1 5 )

( 1  . 1 6 )

l a l xu

) ^ ; K U

( 1 . 1 6 )

2 9
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hand s ide and expressing Z,  a d,  22 ,  we obtain

U = [  ^1d1ag,  '  7 -? , )  
" l  

*  a "d iag(  1 /^ :  a ]  1  r  U

Deno t i ng  i n  ( 1 .18 )  t he  r i gh t -hand  s i de  comp l i ance  ma t r i x  as

sr .  =  K- t  -  a rd lag(  1 / - t  
1  a \  , ( 1  . 1  9 )

the guasistat ic  correct ion of  d isplacernents U is expressed as

U  =  S r  R ( t ) ( 1 . 2 0 )

In the case of  s ingular  st i f fness matr ix  the re lat ion (  1 .1 9)

can' t  be appl ied di rect ly .  fn order to determine Sk wi thout

obtaining higher structural modes, the approach proposed in t38l

can be appl ied (see appendix 21.

1.2 REDUCTION OF NONLINEAR STRUCTURAL EQUATIONS

Representing in the subspace of modal coordinates of a Ii- 
-

near part. Consider the structural equation of motion

M  i i +  c  U  +  K  U  =  1 l (  U ,  U  )  +  R ( t ) (  1  2 1  \

t he  on l y  d i f f e rence  o f  wh i ch  f r om (1 .1 )  cons i s t s  i n  t he  p resence

of a nonl inear funct ion of  d isplacements and veloci t ies on t t re

r i gh t  hand  s i de -  The  equa t i on  (1 .34 )  i s  r ep resen ted  i n  a  subspace

o f  moda l  coo rd i na tes  s im i l a r  t o  t he  equa t i ons  (1 .13 )  ,  
- t '

s ys tem (1  . 221  hasn ' t  essen t i a l  compu ta t i ona l  advan tages  i n

compar ison wi th the or ig inal  equat ion (  1 .21 )  .  Only when the

resonant st ructural  v ibrat ion takes place in the range of  the

lowest  e igenfrequencies,  we can s inpl i fy  the equat ion system by

igmoring the funct ion P in the second equat ion of  (1.22).  In th is

case U is expressed f rom the second equat ion of  (1.221,  that .  is

l inear now, and the f i rs t  equat ion of  (1.22|  represents the

reduced dynamic equation of a nonlinear structure. The afore-

mentioned reduction is based upon a supposition, that higher

ha rmon i c  componen ts  o f  a  non l i nea r  f o r ce  F (U ( t ) ,U ( t ) )  i n  t he

range of eigenfrequencies of truncated modes are comparatively

small, and the J.ower harmonic components don't influence

sigmif icant ly  the general ized displacemenLs 22 -

I f  the nonl inear funct ion is  cont inuous and depends only

upon the displacements I l (U),  the structural  eguat ions at  each

t ime point  t  can be presented in the subspace of  the modal

coordinates of  a l inear ized system [32]  obtained by solv ing the

eigenproblem

From (1 .17 )  f o l l ows  t he  re l a t i on

( 1  . 1 7  )

:  l I

( 1  . 1 8 )ardlag( 1 / ."" ^l  = X-t - ^id1ag( 1 /. .  1 o' ,

notion in the subspace of the nodal coordinates of

part  are presented as

Obviously,  the tangent ia l  correct ion of  the st i f fness matr ix

used in (1.23) presents a bet ter  approximat ion in compar ison wi th

the representation in the nodal- coordinates of the linear part

only-  From the other point  of  v iew, the correct ion of  modal

coordinates at each computation step is a time consuming

operat ion.  In t18l  the subspace of  modal  coordinates is

cgrtpleted by the derivatives of the eigenvectors with respect. to

general ized displacements in order to reduce t .he t runcat ion

errors, and enabl-ing to keep the same modal. coordinate basis

dr. i . rg several  t ime steps.

Appl icat ion of  ident i f icat ion technigues.  The equat ions of

( 1 . 2 3 )

the I inear

< 1  . 2 4 )

t ) , +d iag (  r , , ) i , +d iag ( - l  ) 2 ,=  o 'R1 t1  +  a ru i l a r z ,  f r ,  o r i ,  ) ,
( 1  . 22 )

f r= tu < R(t )  + I i iqarzr+fr ,  or i r ) .

In general ,  the equat ions (1.22) aren' t  independent because

of the nonl inear funct ion I  the a r ight-hand s ide,  therefore thd

I l  +  d lag (p )  z+d lag ( - ' ;  2=  a 'R1 t ;  +  a ' \ t / qaz ,  az ; .

Employing the ident i f icat ion techniques the funct ion

rqplaced by the funct ion

3 0
3 1

l j / i s



i  f Q : r , z i " )  ,  1 =  T , n ( 1  . 2 s )

and  t he  subse t  o f  nas te r  gene ra l i zed  d i sp l acemen ts  Z1  r  , 212 , . . .  i s

determined. The parameters of  the funct ional  dependence (1-25)

can be obtained,  e.9. ,  employing the Ieast  
^sguares 

ap; : robch,

considering the values of the functions F and ll at random values

o f  t he i r  a rgumen ts  [ 29 ] .

1.3 REDUCTION OF STRUCTURAL EQUATIONS WTTH TJNILATERAL

CONSTRAIMTS

The structural eguation of motion with unilateral

constra ints we consider in the fonn

f  M i i  + c U + K U = R ( t )  ,  
:

]  
. . "  l l v _ l i \ u /  ,  

< 1  . ? 5 )

I  D T T < . i
\ r " - * O

By representing the problem in the modal coordinates of the

linear part, Lruncating the dynamic contributions of higher modes

and employing the Lagrange mul t ip l iers (see chap-3.4 for  detai l . -s)

we obtain the system

I  i ,  +  d lag (  r , ,  )  ; ^  +  d lag ( - ' )  zn  =  ^ :  (R  -  P ' x )  ,  <1  . ?7 .1 )

d j -ag( - ' )  z .  =  ^ ' (R  -  P 'x )  ,  <1  .27  .?>  <1 ' .?7>

P L r z a + P a 2 z 2 = d o .  ( 1  . 2 7  . 3 )

The values of  the Lagrange mul t ip l iers X denote ' the

magnitudes of the normal interaction forces produced by the

constra ints upon a structure.  OnIy nonnegat ive values of  these

forces are possibJ-e-  Expressing 22 f rom the second equat ion of

(1 -27) and subst i tut ing into the th i rd equat ion,  we obtain the

vector  ^  as

I  -  [ ^ t  '  i f  \  > 0  '

l O  ,  o t h e r w i s e .

Subs t i t u t i ng  ( 1 .28 )  i n t o  t he  f i r s t  equa t i on  o f
.Qbtaj.n the reduced equation of notion

r) ,+ diag( u)2,+I diag(.z I  + r l i 'n- ' i  o,  t r .  =

=  ^ r ( r  _  i ' n - ' p  s k )  R ( t )  ,

P o r z r + P L 2 z 2 = d o  ,

( L  )  ( !  )

P  o ,  z ,  - t  P  a 2  z z  =  o  ,  r = 1  , 2 , , , ,

,  
r1"r"  A = P StPt ,  and P denotes the matr ix  p ,  f rom which the''.r-ows corresponding to the zero values of X,- are deleted. That
means,  the matr ix  P represents onry ther constra ints act ive at  the
t ine point  t  .  rhe dimension of  the reduced eguat ion (1 -Zgl  is
equal to the length of the vector Z, . The generalized
displacements z. at each time point are obtained from the second.
e q u a t i o n  ( 1  - 2 7 ) .

The equat i .on (1.27) was obtained by t runcat ing not  only:dynamic,  but  arso diss ipat ive contr ibut ions of  the higher modes.
Iil order to take account of the dissipative forces caused by the
inertialess motion of the higher nodaJ- components, the equations
of  the system (1 -271,  beginning wi th the second equat ion,  are
presented as

d l a g (  p , )  z "  +  d i a g ( - ' )  z .  =  a : ( R  -  p ' \ )  , ( 1  . 2 7  . 2 ) '

( 1 . ? 7 . 3 ) '

( 1  . 2 7 . 4 ) '

consider ing the numericar integrat ion schene i t  is
reasonable to suppose that the val-ues of the higher derivatives

22 are egual to zero during one Lime step. Assume the zeto

:" t : : i  
of  a l l  der ivat ives of  the second and higher orders,  i .e. ,

Zz= Z"= . .  -  = 0 Af t .er  d i f ferent iat ing the second equat ion of
( 1  - 27 ) ,  we  e l im ina te  2 " ,  2 ,  f . o  t he  ob ta i ned  sys tem.  De r i va t i ves

: r -w = )  c
L-
j

( 1 . 2 7 ,  w e

1 1  2 0 \

x ( z r )  =  ( P  S k P r ; - ' ( P  a r z r +  P  S k R  -  d o )  ,

and each component of X is replaced by

( 1  . 2 8 )

t,
3 2 3 3



of the external force R is assurned to be R = ii = O . After spng
manipulat ion we obtain

x 1 z r ,  z r )  =  A - t  ( P  a r z r +  B 1 A - 1 P  a r z r -  d o +  p  S k R  )  ,  ( 1  . S 0 )

.T
wnere  t '1=  t ,  SDl r

the componenLs of

are replaced by

r  \ ,  ,\ .  =  {'  l n
\ v ,

If we assume the zero values
( 3 )  < 4 )

b e g i n n i n g  w i t h  r = 3 ,  i . e . ,  Z z =  Z z = - - .

obtaining \ takes the form

, Sor= A2d1ag( P"/_"  
)  a l  ,  and the values of

2

the vector  } '  obtained by Lhe re lat ion (1.30)

i f  the value \ .  )O was obtained f rom (1.30) ancl
f r o m  ( 1 - 2 8 )  ,
otherwise

z2

for

of the der ivat ives

the re lat ion

x l z r , L r , L r >  =  A - t  1 P  a r z . +  B r A - r P  a r z r +  B r A - t B . A - t p  a . z ,

-  B 2 A - t p  a . 2 r -  d o +  p  s k R  )  ,

where B"= P SD2Pr and Sor= ardlag ( u:/ . :  )  o:

( 1  . 3 1  )

and a

r ^ r
The matr ix  A1P'A 

-P 
Al  appear ing on the r ight  hand s ide of

the equat ion (1.29) can be regarded as a complementary st i f fness

matr ix .  f ts  p lesence explains the elast ic  behavior  of  the
structure interact ing wi th the constra int ,  regardless of  the
local  contact  condi t ions.  Simi lar ly ,  subst i tut ing the re lat ions
( 1 . 3 0 )  a n d  ( 1 . 3 ' l  )  i n t o  t h e  f i r s t  e q u a t i o n  o f  ( 1 . 2 7 1 ,  v t e  o b t a i n  a
complementary damping natr ix  a lptA-tBrA-tp L,

compremen ta r y  mass  ma t r i x  a l p tA - t  {B .A -1B r+8 "  )A - t pa ,  -

3 4

irnpact are present.ed by the following equation of moLion with the

constra ints:

M U + C U + K U = R ( t )

c X + K X = u

P U + Q X < d o
( t  )  ( L  )

P U + Q x = d r

where c,  k -  damping and st i f fness matr ices or  scalar

coef f ic ients,  X -  d isplacement vector  or  a d isplacement of  Lhe

rheo].ogical  model ,  Q -  constra int  matr ix  or  coef f ic ient '

The system (1.32) is  represented in the t runcated mo'dal

coordinates of  the l inear Part  as

'  
t2, + diag( r,n )i.+diagl-' 12,= al {R- Ptx  )

P tx  )diag(oz )2,= ^: (R -

c x + k x = - Q t \

P L r z r + P a z z r + Q x = d o

( L )  ( L )  ( L )

P L r z r + P a z z z + Q x = 0

/ 1  a ? \

,  l = 1 1 2 , - - -

E l i m i n a t i n g  2 2 , Z 2 , x , x  f r o m  ( 1  - 3 3 ) '  w e  o b t a i n  t h e  r e l a t i o n s

s i m i l a r  t o  ( 1 . 2 8 ) ,  ( 1 - 3 0 ) ,  ( 1 . 3 1 )  f o r  d e t e r m i n i n g  r '  w h e r e  t h e

matr ices A,  81,  B,  denote

A = P sr. Pt + Q k- 'Qt

B r = p S o " P r + Q k t c k - t Q t ,

B " =  P  s o r P r  +  Q  k - t c  k - 1 c  k - t q r

( 1  . 3 4 )

. .  rn the case of  the absolutely r ig id local-  contact  condi t ion

(  I < - - -  ) ,  t he  r e l a t i ons  (1 .34 )  co i nc i de  w i t h  l - hose  p resen ted  by

A ,  B l ,  8 2 .

,

t

,  L  = 1  , 2 ,  . .  .

( 1  . 3 2 )



Structures wi th the obl igue impact  and s l - id ing f r ic t ion

interact ion points.  The dynamic behavior  of  such sysLems

presented by Lhe structural  equat ion of  mot ion wi th

consLraints

i s

the

M U + C U + K U = R ( t )

P T T < d

p i r - n
r T v  *  v

( 1  . 3 s )

Each element of  the matr ix  product  P"U denotes Lhe re lat ive

d. isplacement of  contact ing points in the normal  d i rect ion to the

contact  surface,  where each element of  the vector  do represents

the in i t ia l  c learance between these poi-n l -s in the stat ic

equi l ibr ium state ( the negat ive va. Iue denotes the preload) -  Thg

corresponding elemenLs of  the matr ix  product  PrU denoLe the

tangent ia l  re lat ive veloci t ies of  contact ing poinLs- They must

have zero values unt i l  the tangenl , j -a1 interact ion force doesn' t

exceed i ts  cr i l ica l  value-

Present ing the equat ions in the t runcated modal

coordinates and employing the Lagrange mul t ip l iers,  we obtain

I i ,  +  d lag(  u. ) i ,+diag(- l )zn= ^: (R -  l f ,x*-  l lx" )

d iae ( - i  12_ -  a l  qn
' r 2 2 2

P " o r Z r + P N a 2 z 2 = d o

-  D ' }  -  P  l  \-  N ' - N  ' T  ' T  /T
- T
T ' X

( r . 3 6 )

I
tPrL rz "  +  ?NL2z2 P  I  A z' T j  t  - 1 " 1 o j " 2 " 2 0 j  /

The values of  the Lagrange mul t ip l iers xx,  xt  denoLe t te

magni tudes of  the normal  and tangenl- ia l  interact ion forces

produced. by constra ints upon a structure.  The normal  forces are

al lowed to acquire only nonnegat ive values l " j -  0 ,  and the

absolute values of  the tangent ia l  forces don' t  to exceed their

c r i t i ca l  va l ues ,  i . e . ,  l r r ,  I  <  k r x ^ j ,  whe re  k r  -  t he  cou l - omb

fr ic t ion coef f ic ient .  At  the t ine point  when the s l id ing in t .he

j  - th contacL pair  ceases,  the values of  the general ized

d i sp lacemen ts  Z1 j  ,  z2 j  a re  deno ted  t h rough  Z ro  ,  z zo j  I f  i n

t he  j - t h  con tac t  pa i r  s l i d i ng  t akes  p l ace ,  t he  va fues  Z1o r ,  Z ro j

are updated at  each t ime point-  On th is account we make the

folJ.owing def in i t ions.  Assume that  the matr ix  PN contains only

the rows P*., , corresponding to l-he active constraints ( i . e - ,

having posiL ive normal  interact ion forces r* . )  0 )  -  The matr ix  P"

denoLes the matrix formed from the rows of the matrix P. as

fol lows:  each row P". ,  corresponding to the s l id ing conLact  pair

{ i ; e . r  l > . r . ,  | < k r \ - - ) ,  i s  r e p l a c e d  b y  t h e  r o w  P " : n P r . i  k r s i S r - x T i ,

otherwise,  i t  remains unchanged. The matr ix  i ,  d"ro l -""  the matr ix

Pr, ' f .o*  which the rows corresponding to the inact ive constra ints

dire l  s l id inq conLacL pairs are deleted.  In a compact form i t  is

pfesented as

(
^ l
' N i  I- t

^ l
P = J- N j  

I
L

P^,  ,  i f  \ "  )o

0 , otherwise ;

P " , ,  i f  l r " 1  |  <  k r \ " 1  '

P^ . : *  Pr . :k rs lgn  xT j  ,  o therw ise  ;

P" . ,  ,  i f  \ ,  )0  and lx r . ,  |  <  k r \ ^ .1  ,

0 ,  otherwise ;
? -

_ ft"l- l ^ l

L '"J l;]
-  [ p l
p  -  |  

- N l-- 
l"J

p

P r ]  (  a 1 z + 4 7 )'  - 2 " 2 o \  /

Taking account on the notat ion introduced above,

re lat . ion for  determinins X is  obtained as

\  -  ( p  S u P t ) - ' ( p  o r r r *  p  S u R  -  d o ) ( 1  . 3 7 )

^ = [

the



The actual  impact  and f r ic t ion interact ion points aren' t

known in advance, therefore iL is  necessary to i terat .e at  each

t ime integrat ion step.  The X value f rom the re lat ion (1 -37) is

obtained in by the fo l lowing algor i thm.

Algor i thm 1 .1

direct ion of  s l id ing),  replace the corresponding

P^r,  P. . ,  by their  or ig inal  values.

Make the corresponding changes upon t.he matrices

7 . If there are any changes made upon

du r i ng  t he  s tep  6 - ,  90  t o  s t ep  2 .

Otherwise case 90 to step 8.

For the tangential forces absent in

the values Xrt  = I  kr \ " t

U p , a l a t e  t h e  v a l u e s  Z r o j =  Z r , r n 6 ,

al l  the contact  pairs where s l id ing

Go to the next Lime step t+at .

the matr ices P-,Pr

the vector ass ign

1 .  I nc l ude

D  - D *

a l l constra ints into Pr,  Pr.  Assumethe

P I- N  
I
I

P I- T )

8 .

9 .

1 0 .

I' - T

o z o i -  L 2 ,  t  + L t

takes place.

for
2 . Subst i tute the values of  \ " , \ " ,  obtained f rom the re lat ion

( 1 . 3 ? ) ,  i n t o  t h e  f i r s t  t w o  e g u a t i o n s  o f  ( 1 . 3 6 ) ,  a n d

obtain the value Z,  *a,  by numerical  integrat ion.

Determine the values X.  r  \ ,  at  the t ime point  t+At ,

subs t i t u t i ng  t he  va lue  Z r . r , L ,  i n t o  t he  re l a t . i on  ( 1 .37 ) .

I f  amonqf the obtained values of  e lements of  thc ! .c tor  \ , {

there are any \Nj  (  0,  delete the corresponding rows f rom

the matr ices P* ,  P,  .

I f  among the constra ints there are any v io lat ing the

constra int  P^j  (  arz,  + arzr)  )  0 ,  p lace again the

corresponding rows into the matr ices PN, P,

Redetermine the matrices P = P

5. I f  there are any changes made upon the matr ices dur ing

t h e  s t e p  4 - ,  9 0  t o  s t e p  2 .

Otherwise go to s l -ep 6.

6.  I f  among the obtained values of  the elements of  the vector

xT there are any sat is fy ing the inequal i t .y  lx  .J  > 
4\  * i

replace the corresponding row of  the matr ix  P^. ,  b"

(P* +P". ,krs ig l  r r . :  )  and delete the row Pr,  f rom the

matr ix  Pr .

I f  arnong the contact  pairs assumed to be in a s l id ing

condi t ion dur ing the previous i terat ion there are any

s a t i s f y i n g  L h e  i n e q u a l i L y  x r . , P r r a ( 2 ,  t , . r - 2 ,  )  >  0  ( i - e . '

Lhe obtained f r ic t ion force vecLor points out  at  the



2. D\I 'IAMIC ANAL\€IS OF LINEAR ELASTIc STRUCTURES

Structural  mot ion laws are obtained by integrat ing di rect ly

the equaLions of  mot ion or  employing the techniques based .gn
integral  t ransforms- The lat ter  way Ieads to the presentat ion in

t ime domain (Green's funct ions approach) or  in f requency domain

(Fou r i e r  se r i es  app roach ) .

A di rect  nmerical  integrat ion of  equat ions of  mot ion are

the main techniques for  obtain ing struct .ural  mot ion laws- Var ious

cr i ter : ia are employed wLren select ing a t ine integrat ion scheme

for a g iven probfern.  For obtai .n ing mot ion laws in the

Iow-frequency range of  an ej -genfrequency specLrum inpl ic i t

numericaf  schemes are preferable.  Together wiLh Lhe of t .en

employed accuracy,  stabi l i ty ,  per iod elongat ion and numerical

dmping cr i ter ia,  convergence of  the natr ix  a lgebraic eguat ion

solut ion at  each t ime step and overshoot ing at  an in i t ia l  s tage

of integrat ion are considered.  There are several  approaches for

ob ta i n i ng  numer i ca l  i n t eg raL ion  schemes ,  o f  wh i ch  a  t r unca t i on  o f

Taylor  ser ies wi th the last  reta ined term correct ion,  weighted

res idua l s ,  f i n i t e  e l emen ts  i n  t ime  a re  cons ide red  be low .  Each

approach produces a fami l -y of  t ime integrat ion schemes, arnong

which many of  the comonly ernployed numerical  schemes can be

found .

I 'h is chapLer conLains Lhe systemat ic present.at ion of  l inear

system numerical  integraLion schemes and can be regarded as an

ove rv i ew .  Howeve r ,  f i nea r  sys tem t ime  i n t eg ra t i on  p r i nc i p l es

presented in th is chapter  fur ther are employed for  obtain ing the

non f i nea r  sys tem i n teg ra t i on  schemes .

2.1 DIRECT AND INDIRECI '  METIIODS

The equert ion of  mot ion of  an elast ic  st ruci -ure r-s

cons ide red  as

M U + C U - K U = R ( t ) < 2 . 1  )

where  M ,  C ,  K  -  mass ,  damp ing  and  sh i f f ness  ma t r i ces  each  o f  t he

d imens ion  nxn  ,  R ( t )  -  ex te rna l  f o r ce  vec to r ,  U ,  U ,  i i  -  noda l

d i sp l acemen t ,  ve l oc i t y  and  acce le ra t i on  vec to r s  each  o f  t he

d i r nens ion  I 1x1 ,  whe re  n  -  number  o f  d .o . f .  o f  t he  s t r uc tu re -  I t  i s

necessa ry  t o  ob ta i n  a  mo t i on  l aw  o f  t he  s t r uc tu re ,  i . e . ,  t he

sc lu t i on  U ( t )  o f  t he  egua t i on  {2 .1 )  ,  w i t h  p resc r j - bed  i n i L i a l

cond i t . i ons  U (O) ,  U (O)  and  exc i t a t i on  l - aw  R ( t )  : r h i s  p rob lem can

be approached direct ly  or  indirect ly .  The di rect  approach impl ies

nmerical  integrat ion of  the equat ion of  mot ion,  and the indirect .

one is  carr ied out  by present ing the problem in t ime domain
(Green ' s  f unc t i ons  ne thod )  o r  i n  f r equency  doma in  (Fou r i e r  se r i es

me thod ) .

I 'he di recl -  integrat ion method employs di rect ly  the equat ion

o f  mo t i on  (2 .1 ) .  I t  i s  d i sc re t i zed  i n  t ime  and  t he  va l - ues  o f  t he

vec to r  U  a t  t ime  s ta t i ons  t ,  t +a t ,  .  .  .  a re  ob ta i ned  by
interpolat ing the vafues U( t  )  dur ing the intervals

t t + ( i - 1  ) ^ t , t + i ^ t  l ,  i = ' 1  , 2 , . . .
The t ime domain approach,  or  the Green's funct ions method,

presents the dynamic response of  the st . ructure as a superposi t . ion

o f  r e s p o n s e s  t o  t h e  u n i t y  p u l s e  e x c i t a t i o n s  6 ( t x , t ) ,  F i g - 2 - 1 ,

where the values 6 at  t ime points ( t+ iAt)  are def ined as

6 ( j ^ t , t )  =

t
- , i + l +  -  ,

^ t
t

J T t -  
-  

,

^ t

i f  ( j - l  ) a i  <  t  <  j ^ t  ,

i f  j ^ t < t < ( j + 1  ) ^ i ,  < 2 . 2 )

0 ,  o the rw i se .

The t ransient  dynanic compl iance matr icx S (  t  )  of  the

dimension nl t r i  is  obtained by integrat ing an equat ion of  mot ion

with I t  r ight-hand s ide vectors:

M 3 + C S + K S = i < O , t l t ( 2 . . 3  )

wi th  t he  i n i t i a l  va l ues  So=  O ,  S "=  O ,  whe re  f  -  t he  un i t y  ma t r i x

of  the dimension ruGi The mat.r ices S"o,  Sio contain ing in their

columns the solut ions of  the homogeneous equat ion wi th uni ty

i n i t i a l  va l ues ,  a re  ob ta i ned  by  so l v i ng  t he  equa t i on

, . : i u o ,  ^  : u o  , ,  - U o
. r . . )  v J  - . t r J  = 0 ( 2 . + 1



with the in i t ia l  values Sl"= f  ,  i : t= 0,  and the eguat ion

. ,  i : uo  ^  : uo  - -  ^uo
M  S - - +  C  S - - +  K  S - - =  0 / 2  R \

wi th the in i t ia l  values Sl"= O ,  Sl"= f  .

The matr ices S,  Sto,  S;"  def ine completety the dynamic

behavior  of  the structure-  I f  they are avai lable,  the dynamic

response of the system to an arbitrary excitation can be obtained

without  employing the equat ion (2.1) .  The displacement vector

Uuo, at an arbitrary time point kat is obtained employing the

relat ion

, ,  ^ u o , ,  ^ u o , ' .
U u o , =  S u i , U o  +  S u o , U o +

f - ^
\ \ H

l _ " ( k - j ) A t ' t j A t

( 2  6 \

.  
j = ]

The matr ice= S,  Sto,  Sto 
"an 

be obtained by integrat ing the

equa t i ons  (2 .3 ) ,  ( 2 -4 ) ,  ( 2 . 5 )  d i r ec t l y .  Howeve r ,  t he  e l emen ts  o f

these matrices can be obtained experimentally, too- The element

Sr. ,  can be considered as a response of  i - th d.o. f .  of  a structure

due to an exci tat ion of  j - th d.o- f .  at  the t i rne point  t  = 0 by

the pulse of  the square at ,  where At  -  the t ime discret izat ion

step -

The t.ine domain approach red.uces the computational effort in

t he  f o l Low ing  cases :

1 )  when i t  is  necessary to obLain a dynamic response of  the

same structure to a number of  d i f ferent  exci tat ion lawsl

2)  when i t  is  necessary to obtain a dynamic response of  .a

f ew  spec i f i ed  d .o . f .  due  t o  a  g i ven  exc i t a t i on  aL  a  f ew  spec i f i ed

d .o . f .  I n  such  case  i t  i s  necessa ry  t o  know  on l y  t hose  dynam ic

compl iances S",  ,  the numbers of  columns j  of  which correspond to

the nonzero exci tat ions,  and the numbers of  rows 1 correspond to

the  d .o . f .  unde r  cons ide ra t i on .

The frequency domain a h assumes the presentat ion bf  an

exci tat ion force as wel l  as of  a structural  response as four ier

i n t eg ra l s

f
R ( t )  =  |  t  n - ( - )  -  i R . 1 . 1  I  e i - t d -

J '
o

O

u ( t )  =  f  ,  u " ( . )  -  1 U . ( - )  I  e i . t d .
J -
o

( 2 . t  1

( 2 . 8 )

:  Iu " ' ]  f  R" l
K  t - t =  t " l

Lu=J Ln.J ,

f o r  a t r  t he  va rues  o f  o  e  [O , r c ] , s6 " r "  f r  , .  I  
K  -  t tM  t ' .  

I
|  - o C  K - o - 1 " 1  J

S u b s t i t u t i n S  ( 2 - 7 ) ,  ( 2 . 8 , )  i n t o  t h e  e q u a t i o n  ( 2 . . t ) ,  w e  o b L a i n

r -

J  
{ -  u . ' *  i o c  +  K ) ( u . -  1 u . )  e " . ' u .  =  

|  
( R "  -  i R . )  e " - . d o  ( 2 . 9 )

. Equating the rea.l and imaginary parts on the right._ and
le f t - hand  s i des  o f  ( 2 -91 ,  we  ob ta i n  an  a rgeb ra i c  equa t i on  sys tem
in terms of the amplitudes U , U as

( 2 . 1  0 )

.  Having obtained the ampl i tudes U" ( - ) ,  U.  ( - )  f rom the
equa t i on  (2 .10 )  an  subs t i t u t i ng  t hem i n to  t he  re l a t i on  (2_g l ,  a
t ime law of  a structural  response is obtained.

The matr ix  K is  the dynamic st i f fness matr ix  at  the harmonic
exci tat ion of  the f requency o -  The mal-r . , ]x  f r -1 is  the dynamic
.eomp)- iance matr ix ,  each efement ( f r - t ) i - . ,  ot  which can be obtained
exper imentarry,  too.  r ts  value equars to the harmonic v ibrat ion
eiunpr i tude at  i - th d-o- f ,  due to the uni ty harmonic exci tat ion of
t he  f r equency  o  a t  t he  j - t h  d .o . f .
'  The f requency domain approach reduces the computat ional

, e f f o r t  i n  t he  f o l l ow ing  cases :

1 )  i f  i t  is  necessary to obtain a spectrum of  a structural
xesponse;

2) i f  the spectrum of  R ,  and consequent ly the spectrum of
U  a r e  d i s c r e t e  a n r f  f i n i t e ,  i . e - ,  t . h e  i n t e g r a l s  ( 2 . 7 ) ,  ( 2 . 8 )  c a n
be presented as t runcated Four ier  ser ies



2.2 CRITERIA FOR SELECTING DIRECT INTEGRATION SCIIEME

Le t ' s  cons ide r  l - he  ma t r i x  equa t i on  o f  mo t i on  (2 .1 ) .  A  d i r ec t

numerical  integrat ion of  th is equat ion means obtain ing the values

o f  t he  vec to r  U  a t  t he  t ime  po in t s  t ,  t +a t ,  t +?d t  '  .  .  .  by

appropr iate ly interpolat ing the vafues U(t)  c lur inq the intervals

t  ( i - 1  ) ^ t ,  i ^ t l  ,  i = 1  , ? ,  -  -  -  -  F u r t h e r  w e  d e n o t e  U ( l ^ t )  =  U " a t

Le t . ' s  cons ide r  t he  s i ng le - sLep  schemes ,  de f i n i ng  t he  va lues

U, *o,  ,  U.  *a,  ,  U,  *o,  ,  . . .  at .  the Lime point  t+At employing onlv the

values Ur ,  Ur ,  i . i ,  ,  -  - .  at  the t ime poinl -  t  and the equat ion of

mo t i on  (2 -1 ) .  The  mu l t i - s t ep  schemes  emp loy i ng  t he  va lues  a t

seve ra l  p rev i ous  t ime  po in t s  t ,  t *A t ,  t - ? t t , . . .  f o r  ob ta i n i ng  t he

vafues aL the t ime point .  t+at  at  presenL aren'L very popular  for

integrat ion of  st ructural  equat ions of  a large dimension because

of greater  amounts of  computer storage in compar ison wi th the

single-step schemes and the necessi ty to obtain the st .ar t  values

U _ a r , U - 2 a r , . . .  .  M o r e o v e r ,  f o r  t h e  m a j o r i t y  o f  n u f L i - s t e p  s c h e m e s

equ i va len t  s i ng le - s tep  schemes  can  be  ob ta i ned .

The re  a re  exp l i c i t  and  i r np l i c i t  d i r ec t  i n t eg ra t i on  schemes .

Assume  the  ma t r i ces  M  and  C  o f  t he  equaL ion  (2 .1 )  be ing  d i agona l .

An expl ic i t  scheme presents the re lat ions for  obtain ing the

values U,.a,  . .d i ts  der ivat . ives f rom the values Ur and i ts

de r i va t i ves  i n  an  exp l i c i t  f om ,  i .  e .  ,  w iLhouL  so l v i ng  an

algebraic equaLion system or employing a matr ix  inverse.  The

l schemes  t ha t  don ' t  ma tch  t h i s  r equ i r emen t  a re  cons ide red  as

i np l i c i t .  Howeve r ,  exp t i c i t  a l go r i t hms  don ' t  possess  t he

uncondi t ional  sLabi l i ty  property and are therefore of

u s e .

a  l i n i t ed

The sLructural  dynamics problems should be part i t ioned

depending on the re lat ion between the spectrum of  exci tat ion and

the spectrum of  e igenfrequencies:

1 )  obtain ing staLionary mot. ion laws, when the dynamic

behavior  is  determined basical ly  by several  lower modal

components;

2)  obtain ing t ransient  mot ion laws and solv ing wave

propagat ion problems, when the dynamic behavior  is  heavi ly

inf luenced by higher moda. l  components;

The expl ic i t  schemes are best  sui ted for  the second group of

problems, def in ing the t ime integrat . ion step suf f ic ient ly  smal l

to approximate the highest  modal  response and preserving the

dynamic cont . r ibut ions of  a l -J.  the modal  components.  For the f i rs t

group the inpl ic i t  numerical  schemes are preferable.  Empfoying

the uncondi t ional ly  stabfe schemes i t  appears suf f ic ient  to

def ine a t ime integrat ion step suf f ic ient ly  smal- I  to approximate

tht :  h ighest  L-our ier  coinponent of  an exci tat ion Iaw. In sone

cases ,  e .g .  [ 17 ] ,  t he  imp l i c i t - exp l i c i t  app roaches  a re  emp loyed

in order to cope wi th the dynamic problems of  the coupled

sLructures possessing subsets of  e igenfrcquencies severely

di f fer ing f rom each other.

The nlmerous expl ic i t  and inpl ic i t .  schemes had been

developed up to th is t ime. In order to se-Iect  a numerical  scheme

for a g iven structural  dynamics problem, accuracy.  stabi l i t .y  and

other asymptot ic  features of  the scheme are to be considered.  An

analysis of  such features is  carr ied ouL.  by invest igaLing the

behavior  of  the scheme when approximat ing a f ree mot ion of  a

s t r u c t u r e ,  i - e . ,  b y  i n t e g r a t i n g  t h e  e q u a t i o n  ( 2 . 1 )  w i t h  t h e  z e r o

r ight-hand s ide.  Prescnl- ing equat ions in modal  coordinates as I l

indepc;- .def iL equat ions,  t -he main asynrptot ic  features of

numerical  scheme are invest igated by ; rpply ing the scheme to

equaLion of  mot ion of  an undanped osci l la tor  as

the

the

L i + o ; u = 0

o r  o f  a  damped  osc i l l a t o r  as

\ 4 .  J )

N

F.....-

R ( r )  =  )  <  n - "  -  i R * u )  e ' " " '
L,

J = 1

N

r T / / r \  -  \ . _  r  r r  -  i T T  \  o " L t 'v \ ! /  -  
l _ ,  

" " k

j = 1

( ? - 1 1 )

< 2 . 1 2 )

funct ions

approach

per iodic

where the number N isn ' t  very large.  Only per iodic

possess such a spectrum, therefore the f requency domain

is preferable for  obtain ing a per iodic response to a

exc i t a t i on .



u + 2 h u + o l u = 0

An arbi t rary s ingle-step scheme appl ied to the

( 2 . 1 3 )  o r  ( 2 . 1 4 )  c a n  b e  p r e s e n t e d  a s

' r * A t -  " ' t

where X -  the ampl i f icat ion matr ix  ,  and f  = U, or  f  =

l 1  \: l
u I etc., depending upon the numerical scheme under

i i J
considerat ion.  I t  fo l lows,  that  asymptot ic  features of  a numerical

scheme  app l i ed  t o  t he  equa t i ons  (2 .13 )  o r  ( 2 .14 )  depend  on l y  upon

the features of  the matr ix  I  ,  because af ter  N steps the equal i ty

Stabi l i ty .  A numerical  integrat ion scheme is stable,  i f

the obtained solut ion of  the homogeneous equat ion (2.13) or

(2.141 is  l imi ted at  arbi t rary in i t ia l  values.  I t  fo l - lows f rom

the  re l a t i ons  (2 .16 ) ,  ( 2 .18 ) ,  t t r a t  t he  s tab i l i t y  i s  ensu red  i f

for the spectral radius of the matrix I the ineguality

^ < 1 <2.z] t

is  held,  and the mul t ip le e igenvalues sat is fy the inequal i ty

l \ l  <  1 < 2 . ? 1 )

A direct  numerical  integrat ion scheme is uncondi t ional ly

stabJ-e,  i f  the solut ion of  the equat ion (2.13) is  l imi ted aL

arbitrary initial. val-ues and aL an arbitrary value of an

integrat ion step At  .  I f  s tabi l i ty  is  obtained only by def in ing

the certain values of a time integrat.ion step, an algorithm is

condi t ional ly  stable.  The st .abi l i ty  of  the numerical  scheme

means, that the numerical round-off errors aren't accumulated.

The unconditional stability means, that. the solution remains

Iinited at an arbitrary time integration step, even exceeding the

free vibration period T = + . In this case a magnitude of an-o

integrat ion step is  def ined in order to obtain a sat is factory

approximation of the highest Fourier component taking an

appreciable part in the response of the structure to a given

excitation. The contributions of the higher modal- components are

f i l tered because of  the uncondi t ional  stabi l i ty  of  an algor i thm.

Amplitude decrement and period elongation caused by a

nuner ical  scheme appl ied upon the equat ion (2.14,  can be regarded

as a measure of a non-coincidence of the anplitude and phase of a

motion .Iaw produced by the scheme with those of the exact

(analyt ic)  solut ion dur ing a suf f ic ient ly  long t ime interval

l t ,  t +Na t l
Assume ^ = a t  1b as a pair  of  conjugate eigenvalues of  the

matr ix  X ,  and present the solut ion of  (2-14) in the complex

p lane ,  F i g .2 .1 .  The  two  comp lex  magn i t udes  U ,  and  U , *o .  r ep resen t

the amplitude and the phase of the vibration at the time points t

and t+ t. Wi.thout Ioss of generality they can be regarded as

subvectors of  an eigenvector  6.  of  the matr ix  X,  and,  analogous

to  t he  re l a t i on  (2 .16 , ,  we  ob ta i n

-N
? - F r' t + N A r  -  

"  - r

- N  ^  . N  -
- L  o i  =  ^ i  o i  ,

vrhere \ , 6, - the 1-th eigenvalue and the i-th eigenvector of

the matr ix  T,  1261.

An arbi t rary vector  f r  can be presented as a superposi t ion

o f  e i genvec to r s  o f  t he  ma t r i x  I  , i . e . ,  as

- t

w h e r e l - d i m e n s i o n o f

coe f f i c i en t s .

B y  s u b s t i t u t i n g  ( 2 . 1 8 \ ,  ( 2 - 1 8 )  i n t o  ( 2 . 1 6 ) ,  w e  o b t a i n

-  r  + N A ! r f  F ,  o ,  ( 2 . 1 9 )

r t  fot lows,  that  for  Iong t ime intervals [ t ,  t+Nat]  the

asymptot ic  behavior  of  a numerical  scheme is def ined by the

magni t .ude of  a spectra l  radius o€ the matr ix  I  .

I
\_.

l
L-

the

P ,  6 r ,

matr ix  L ,

( ? . 1 4 )

equation

( 2 . 1 5 )

t 2  1 A ' , t

< ? . 1 7  )

( 2  . 1 8 )

and (? i- weighf

ru l
l " '  l ,  o r

t .akes place.

It is known that

I

L

4 6



I

U , * o , =  \  U .

r 2 2 b(  - L n ( o  + b  )  1  ! d r c t g -  )
e y h g l g \  =  8  2  o

At the same time the analytical solution of the equation

(2-14,  is  presented by the re lat ion

T T  =  T T  o ( - h  t  i o  ) A t (2 .23>

|  2  . 2
where  o  =  {o ._  f i  .

F r o m  t h e  r e l a t i o n s  ( 2 . 2 2 1 ,  ( 2 . 2 3 )  w e  o b t a i n ,  t h a t  d u r i n g  t h e

time interval of the length At the relative error caused by a

numerical scheme equals

l _ e ( 1 , . ( o 2 * b 2 )  
+ h a t + i  ( o - o t  )  ) = 1 _ e r o ,  + i - € a t  -  O ( u ) + i 0 ( e ) ,

where iD = afctg 
;

The order of  the re. Iat ive error  (2-24) can be obtained by

employing analyLical  expressions for  u and e,  and 0(u)  and 0( t )

represent the ampl i tude and phase errors.

The value Q can be expressed through the distor ted

numerically obtained) vibration period as

^ , L .  r \- 6 -  -  t i

( 2 . 2 4 )

( i . e . ,

analyt ical

< 2 . 2 7  )

produced

( 2 . 2 8 )

i

F ig -2 .1  Un i t  Pu l se

F jg .2 .2  D i sp lacemen t  vec to r s  on

Points t  and t+At

^ -  ZnLl  , -, T  '

or

^ ?nntr = - - 6 -

The vibration Period, in accordance with the

solut ion, equals

^ l f t
L - ;

Expressing as a percenLage, a per iod elongat ion

by a numerical  scheme is obtained as

the comPlex Plane at the time

r oo  i -T  =1oJ (
T

and an amplitude decrement - as

. 1  2  2

1 0 0  (  1 - e ( t r ' ( o  
+ b  ) + h ^ t  ) )  =  i o o  (  1  -  l \ l " n o ' )

( j -1)At

Imu

k
Re U1 +6t Re Ui Re

4 8 4 9

( 2 . 2 e )



--...-

According to the stabi l i ty  requiremenL l \ l  < 1,  the re lat ion

(2-29) enables to evaluate the numerical danping feature of a time

integration scheme- In the case of an undamped oscillator (h=0)

the re lat ion (2.291 def ines in percentage the decrement of  f ree

vibration amplitude during one period caused by the numerical

damping feature of a schene. If the numerical damping is

considerable at  the values *  , ,  1,  the contr ibut ions of  h igher
f

Fourier components to the system's response are suppressed_.

algor i t tunical ly  .

The accuracy order of a numerical scheme for an undamped

osci ] ' la tor  equat ion (2.13) is  obtained by compar ing an analyt ical

solution with the numerical one during the time intervdl

t t , t + A t l -  r h e  r e l a t i o n  ( 2 . 1 5 )  i s  p r e s e n t e d  a s

The matr ix  Xo in (2.30) is  obtained by solv ing the equat ion

(2 -13 )  du r i ng  t he  t ime  i n t e r va l  [ t ,  t +a t ]  as

,  From the inequal i ty  (2-34) i t  appears that  the val-ue of  the

norm of  the matr ix  E presents a more severe restr ic t ion,  than the

spec t ra l  r ad ius  ( see  t he  i nequa l i t y  ( 2 .201  -  T f  p  <  1  ,  i t  i s

ei isured that  l in  i l f t f i l  = 0 -  sut  when N isn ' t  large,  th is norm
N + @

cen be rarge,  and excessive val-ues of  l l r ,  * .a,  I l  *^y be obtained.

Therefore,  i r respect ively of  a c i rcumstance that  the asymptoL. ic

behavior of a numerical scheme is governed by the spectral radius

of the matrix X , ttre val-ues lllt *Nat ll for small values of N

depend upon the value of the norm of the matrix X- the matrix I

sa t i s f y i ng  t he  s tab i l i t y  c r i t e r i a  ( 2 -20 l  can  possess  an  a rb i t r a r y

Iarge val.ue of the norm.

Convergence. In order to obtain the matr ix  E for  impl ic i t

schemes, i t  is  necessary to invert  one or  several  t imes the

ma t r i x  o f  t he  d imens ion  equa l  t o  t ha t  o f  t he  equa t i on  (2 .1 ) .  F ro rn

a computational point of view, it appears reasonable to present

t he  re l a t i on  (2 . ' 1  5 )  as

T r - T i
" t  

- t * A t  -  - o ' t ( 2 . s 5 )

where no matr ix  invers ions by obtain ing the matr ices X1 and Xo

a ie ' emp loyed .  Fo r  ob ta i n i ng  r ,  * o ,  f r om  the  equa t i on  (2 -35 )  t he

i terat ive l inear a lgebraic equat ion solut ion algor i thms may be

adopted as fo l lows:

obtain

: . ,  r  =  TNr- t + N A t  -  
" ' t

Consider ing the norms of  vectors and matr ices,

stated that

l l  r  l l  < l l  
-F.Nl l  

t l  ? r r
i l  - t + N  

t l l  
-  

l l  "  l l  l l ' t l l

k + 1  k
r  -  |  7  L  t t  -  |  \  7' t * N n t  -  

" O ' t  
'  \ r  " t / ' t - N A t

p  (  !  -  I l )  s  1

'  The inequal i ty  (  2 -  38 )  is  regarded as

condi t ion of  a numerical  scheme.

I  i : : : : ]  =' I  i : ]  = (xo+n,, I i : ]  (z 30)

( 2  . 3 3  )

i t  can  be

< 2 . 3 4 )

(2  . 37  )

the  convergence

^ i r , . ^ +
r  - r r r @ a u  a a c , . r f  

' l

_  I  o  
u v - @ A L  

I
t r o =  I  I

L COSoAI {Smoatr I

r t  =o(a to* ' ,  f "  
o i t l

l c a t  d J  ,

where the values of  L l - rc coef f ic ients a,  b,  C,

( 2 . 3 1  )

The matrix I, contains the first expansion members of an

error caused by a numerical scheme. It is obtained by expancling

the elements of the matrix Io into the Taylor series and

subtracting the corresponding elements from the elements of the

matr ix  X.  In general ,  the matr ix  X,  is  presented as

< ? . 3 2 )

d depend upon a

given numerical  scheme. The matr ix  X is  cal led compat ib le wi th

the matr ix  Io,  i f  p > '1 
in the expression (2.32).  The nurnber p is

an accuracy order of  a nurner ical  scheme def ined by the matr ix  I .

"overshoot"  feature of  a numerical  schene denotes i ts

capability to produce excessively Iarge val-ues of a response

dur ing the very f i rs t  sLage of  t ime integrat ion.  When apply ing

t h e  r e l a t i o n  ( 2 . 1 5 )  a t  t h e  t i m e  p o i n t s  t + a t ,  t + 2 4 t , . . . , t + N a t ,  w e

r.1hgle k -  the i teraLion number ' .  The convergence of  the i terat ive

scheme  (2 .36 )  i s  ensu red ,  i f  t he  spec t ra l  r ad ius

5 0 5 1



2.3 SINGLE_STEP NU}{ERICAL SCHEMES

2 .3 .1  We igh ted  res i dua l  app roach

Let 's  consider the equat ion of  mot ion (  2.1 )  .  Dur ing the

t ime  i n te r va l  [ t , t +a t ]  t he  t ime  f unc t i on  U  i s  app rox ima ted  by  ' a

p-th order polynomial  as

q . tq TI
where U

d tq
The re. Iat ion (2.38) contains the p f i rs t  terms of  the Taylor

ser ies expansion of  the funct ion U ,  and the Lerm . : t tS

approximates the residual  term of  the expansion.  Assume t i "

- - 4

va lues  U t ,  U r , . . . ,  U ,  a t  t . he  t ime  po in t  t  known .  Emp toy ing  t he

relat ion (  2 .  38 )  ,  we express the unknown values of  U,  *o,  ,

U ,  *o ,  , . . . ,  U t *a t  a t  Lhe  t ime  po in t  t +A t  i n  t e rms  o f  t he  unknown

va lues  o t  q+ '  as

h l
.  p -  |  -k  F . . . -  q  ^ + q - k  . + p - k  k  . + p - k
I I  _  \  T T  a L  |  ^ . ( P )  a L  _  T T  ,  ^ ( P )  a l ,  1u , * o , =  )  u . G = x f t - ' ; -  T p = ; . r  

= U . * a .  * o ; - ' T p T X ,  ( 2 ' 3 9 )

Q=k

f o r a l t  k = O , p : l -

The value of o| o'  is obtained employing t.he weighted

res idua l  approach-  Subst i tu t ing  the  re laL ion  (2 .38)  in to  the

e q u a t i o n  ( 2 . 1 )  w e  o b t a i n

] ' i l t 'o t
-  -  = 9 A i '

a l  q

J rr/dt

where  6o= ' l  ,  0  S  eo<  1  ,  we  ob ta i n

a r k

I \{udt p-1
6  _ \  f l  o t o - u  -  ( o ,  a t P - k-F* =)- 

",Tii=kfr 
eo-,.+ o,'"'fpt;.t 

"
J  F u u  n = k
o  a  ' ^

u -  |
t-

t-
n - n

t T  U  ,  - . ( P )  L
u r F T  r  q .  

n T

A t

J tlrRdt
o b- 1 ,  =  j { '  ( ?  - 4 ? )

J lrdt

o_o , k=U,(P-l-f . <2.43)( 2 . 3 8 )

( ? . 4 0 )

A I

Div i d i ng  t he  equa t i on  (2 .40 )  by  IWOt ,  we  ob ta i n
J

, 
IE].6;,'"o_..ot",g$"

.' 
IL;rfr+".-'* 

ol''ffi"

. - [L; n{; "'* ';"'++: "'] - u ='

I
I

a ' 2 1
I

)

'l
I
I

" - t  l
)

At

f w < r'lii + CU + Ku * R ) dt = O
.)
o

where i l i  -  the weight  funct ion.

De f i n i ng

F ' r o m  t h e  e q u a t i o n  ( 2 - 4 4 1  t h e  v e c t o r  o t o ' i s  o b t a i n e d  a s

f  r r p -  n t p - l  r J - p  l - loio' = 
Li=tn "o-"M - i i l t "o-'c * +i- ""* -J

'  (  R -  Mf r r -^ , -  c f r . *o , -  K f r , *^ , ) ,

,  :  p 1 o ^ r o  i  P l q i + q - 1
w h e r e  U , r ^ , =  )  U . l t  \  t t  a L  6

L- .  q f  "o '  ' .  *4,  = 
l_  

u,  (q-- f f |  ao-r ,

q=0  9=1
. .  9 - l
;  F -  q  ^ + q - 2u,.a.= L u'^Cizn e,-,  '

q=2

( 2 . 4 4 )

( 2 . 4 5 )

( 2 . 4 6 )



The p-th order a lgor i thn SSpj  is  completeJ.y def ined by the

r e l a t i o n s  ( 2 . 3 9 ) ,  ( 2 . 4 5 1 ,  ( 2 . 4 6 1  [ 4 5 ] .  T h e  n u m b e r  j  d e n o t e s  t h e

equat ion order,  and for  the equat ion of  the second order (2.1)  we

have j=1. The values eu , k=U,]:T are defined by a selection of a

weight function P , and their values are defined in order to

submit the desired features to the numerical scheme. The p-th

order nurnerical scheme starts with the prescribed va.Iues of lhe

vector  U and i ts  (P-1 )  der ivat ives at  the t ime point  t=0,  i .e. ,
k

with the values Uo, k=U'[=T.

A lgo r i t hm  2 .1

1 .  Ob ta i n  i l . * o ,  t . o .  t he^ re l a t i on  (2 .46 )  emp loy i ng  t he

already known va1ue" U., Q = U-,F:T .

O b t a i n  o t P '  f r o m  t h e  r e l a t i o n  ( 2 . 4 5 ) .

Obtain {*ar f .o* the re lat ion (2.39),  Q = O;p=T

4. Repeat steps 1,2,3 of  th is a lgor i thm for  the next

t ime  s tep .

rn ord.er  to obtain the load vector  i  aro.  (2.43),  i t .  is

necessary to obtain the value of  an integral  in (2-43).  However,

often the the J-oad vector is prescribed only by its values at the

t ime  po in t s  0 ,  A t ,  ?L t , - . .  I t  appea rs  r easonab le  t o  assume  the

l inear var iat ion law of  R dur ing the t ime interval  [ t ,  t+at l ,  and

to  r ep lace  t he  re l a t i on  (2 .421  by

R  =  € r \ * a . +  ( 1 - s l )  q  < ? - 4 2 > '

Employing the Taylor  ser ies expansion of  (2.45) and the

equa t i on  (2 -1 ) ,  we  ob ta i n

where the val.ues at the time point t are supposed to be accurate.

Therefore the SSpj  numerical  seheme obtains the values {*a. ,
.  (  p _ 1 )

Atu t -a t ,  -  -  .  ,  a t p - '  u . - o ,  w i t h  an  e r ro r  O (A te " t  ) ,  and  i t s

accuracy order equals pf1

The relat ion (2.15) for  the SSpj  takes the form

bo=. la t2eo ,  b r=  2h  a t  €o+ . f , t t ' e ,  ,

b u =  " u - t  + z h a l e k - L  *  
- l a t t e , .  

,  R = z n^  ( k - 2 ) !  ( k - 1 ) !  k !

(2  .4e)

,  t he  r e l a t i on  (2 .481  can  be

TT
t + a t

U.rarat

( p j r >

T T  r t P - i
" t . A r -  "

ur

U.  o t

( p j  r  r

U t  A t o - '

( 2 . 4 8 )

ofate

where

Def in ing r(P)=

presented as

1  1 / 2  1

1 1

n l

n n l-l-l----::.;-
o l z P

n", = il
L:

1 / p l
1  /  ( b -1 ) l
1 /  < b - ? ) l

___1_____
h

- 1  P

? .

3 .

i 'J:i, l  I x:: '  i  t j : '  I f"i" ' l
{ - - - - - f  |  - - - - - - - - - - - - - l  1- - - - f  (2 .s0)

I o .J L r:: '  i  r:; '  ]  l-J"'J,

<2.47 >

where  the  mat r ix  b locks  I . " ,  X .o ,  Xo. ,  Io*  a re  o f  the  d imens ion

h v r  r - *  1 ! 1  
,  a s  i t  f o l l - o w s  f r o m  t h e  d e f i n i t i o n  ( 2 . 4 9 1 .

P ^ P '  P ^ t ,  t ^ P ,

The re la t ion  (2 .50)  t rans forms in to  the  re la t ion

{ r j i l . }  =  i  r j l ' -  r j l ' ( r l l ' ) - ' x j : ' l  { " j ' ' }  (2 .51  )
.  L - t * a , J  L  

- . .  - r a  ' - o q  - o .  
I  t - t  )

The stabi l i ty ,  numerical  damping and per iod elongat ion

features are def ined by analyzing the spectra l  radius values of



t he  ma t r i x  i n  t he  re l a t i on  (2 .51 ) .

The analysis of  the numerical  schemes of  the f i rs t  and

second order for  the equat ion (2.1)  is  presented in deLai l  in  the

Appendix 1.

2.3.2 General izat ion of  the Newmark's scheme

Consider the equat ion of  mot ion (2.1)  and approximate the

values of  the vectors U, *o,  ,  t .  *o.  , . .  . ,  i l ,  *as at  the t ime point

tr+^tr as

n
F -
)

L-

w h e r e a { J = l J .  .  - U  a n d B  = 1  i s a s s u m e d .
r  + a !  I  m

The relat ion (2-52) can be regarded as Taylor  ser ies

expansion up to the term contairri.rg il , and the remaining terms

F- d# (il,ro,- il,) = nu ffi'; , k=u,n , ( 2 . s 3 )

can be regarded as approximations of the residual tems-
1

rf  Bk= m: lhT ,  k=Olm ,  the residual  terms (2.53) are 
. - the

Taylor series terms containing 
-it' 

. However, j,n general

arbi t rary values F,  can be selected in order to obtain necessary

features of  a numerical  scheme (e.9. ,  to achieve a compromise

between accuracy and stabi l i ty) .  Subst i tut ing the re lat ion (2-521

inLo  t he  equa t i on  (2 .1 )  a t  a  t ime  po in t  t +AL ,  we  ob ta i n

t=0.  r r  at  the t ime point  t  = 0 onry the

prescr ibed,  i t  is  necessary to obtain the

eguations

k - z  k - z
+ K  U o - R o  , k = Z , n

va lues  U U
o -  o

k

values U from
o

12 tr.A\

are

the

k  k -  r

M U  = C  U
o o

k

" t + A t  
-

J  ^  t J - k  ^ * h - k

u,djXX * pu(ffiI aU = Q:.+ buaU , k=O,m

re lat ions

k k
TT - lT Lr rTI lz -  ?I--FU t * A t  -  r t _ A t -  a k - t ,  ^  -  u r l i t  .

4. Repeat the steps 1-3 for  the next  t ime point-

. Sometimes it may be preferable in place of the unknown

vector  aU in the equat ion (2-55) to consider the vector  AU ( i f

s  = O ,  the displacement vector  is  regarded as an unknom).  rn

o rde r  Lo  subs t i t u t e  t he  va r i ab les ,  t he  re l a t i on  (2 .52 )  i s  cas t  t o

the form

a U = ( U - o ) / b' k

The  equa t i on  (2 .55 )  p rese rves  i Ls  f o rm ,  i f  i n  p l ace  o f  bu  ,

Qu we consiaer bf  ,  qI  ,  k  = T,m def ined as

- x  x  . x
b l = b . / b ,  c : = q . - b : q  ,  k = T , :

. k

The relat ions for  obtain ing U,*a,  . t  the steps 1.  and

the algor i t t rn 2-2 take the form

k !
- -  x  . x
u,*a ,  =  qk  +  oL  au i { ,  =  u , i l l ( 2 . se )

( f o r  k  =  S  an  i den t i t y  t akes  p l ace ) -

The  re l a t i on  (2 .15 )  f o r  t he  gene ra l i zed  Newmark ' s  scheme

A lgo r i t hm  2 .2

1 .  ObLa in  t he  r i gh t -hand  s i de  vec to r  o f  t he  equa t i on  (2 .55 )

R t * a t - ( M q " - C q . - K q . )  ,
and simultaneously assign

k

U . * r = Q u ,  k = C I E

2 .  Ob ta i n  AU  f r om Lhe  equa t i on  (2 .55 ) .

3.  obLain the values of  the vectors i t r -^ ,

(2 .  s7 )

( 2 . s B )

3 .

< 2 . 5 2 )

, employing Lhe

( 2 . 5 4 )

After  some manipulat ion the basic re lat ion for  an m*th order

numerical  scheme is obtained as

(b,M + b,C + boK )  ^ i l  =  \ -o,  
-  (  M q"+ C q,+ K qo)

The m-t .h order nuner ical  scheme star ts wi th the prescr ibed

values of  the vector  U and i ts  l i l  der ivat ives at  the t ime point

o f



to the p- th order at  the t ime points t  and t+at  ,  denot ing them
. p . p

i s  X o r  X o , . . . , X o  ( a t  t h e  t i m e  p o i n t  t  )  a n d  a s  X r ,  x r , . . - , x a  ( a t

the t ime point  t+at  ) .  The value X.  at .  an arbi t rary t ime point

wi th in the interval  z e t  t ,  t+At I  can be expressed. through the

values of  Lhe vector  and i ts  der ivat ives at  the begin an end

points of  the interval ,  enploying a set  of  or thogonal  funct ions

def ined wi th in Lhis t ine interval .  Let 's  employ the p- th order

(p=0 , ' 1  , . - - )  uenn i t i an  po l ynom ia l  f am i l y  deno t i ng  t hen  as  3 f . ,  ,

l i  =  U ,p  ,  j  =  0 , ]  ,  con ta i n i ng  t he  (2p+1 ) - t h  o rde r  po l ynom ia l s .

Denot ing f+ ,  they are presented expl ic i t ly  in the Appendix 1.3.

The value of  X at  an arbi t rary t ime point  wi th in the

in te r va l  r e I t , t +a t )  i s  i n t . e rpo la ted  as

( 2 . 6 3 )

rn fact ,  the t ime int .erval l  t ,  t+at  ]  can be regarded as a

f in i te e lement in t ime wi th the nodes at  the ends points of  the

interval .  The values X",  X. ,  i  =T,p should be.regarded as nocJal

values,  and the Hermit ian polynomials 0; j  ,  k=Up ,  i=0,1 -  as

form funct ions.  Subst i t r rL ing the re lat ion (2.63) into the

equat ion (2-621,  we obtain

t?- zhu ^'n
3 =-------3- + 

' '"-t 
- 

*ot'o

- * 1  
a t z ( m - z ) !  a t ( m - 1  ) l  m !

In the Appendix 1.2 an inf luence of  the values of  f l i  upon
the accuracy and stability of the numerj.cal scheme is
invest igated,  and the rerat ion of  the presented scheme wi th other
weII  known numerical  integrat ion schemes is shown.

2 .3 .3  Reduc t i on  t o  t he  f i r s t  o rde r  sys tem.  F i n i t e  e l emen ts
in t ime

Ihe  equa t i on  (2 .1 )  can  be  p resen te r l  as  a  f i r s t  o rde r
di f ferent ia l  equat ion

Y = A v + D ( ?  A 2 \

is  considered as

T T' t r A t

T T
" t + A t

TT
t + a t

n

x =

where

, l  -  , , 2  A  -  a u / ^ +  ,  2
* o -  - o ,  u L -  L L t / ^  L  +  O o ,

l -M- 'c  -M- 'K  Iw h e r e  
r  o  . 1 ' P =

ut

T T
" t

:

U
I

- ; -
^U

( 2 . 6 0 )

< 2 . 6 1 )

[. ' l
t _ - l
l ' j
t  s  der ivat ives up

f 1  1  1 / 2 !  . . .  1 / n t  ^ F o / m !  
' t

13 I I ::: iill-Lll ;:ill-Llil
t l
lo o o 1 t?^ |

L;;--;:-;;---:::----r:--- 
- ;;::1,

1 2 h - t
i -  O

r  _  ,  { = a r t i t  ,J  t + z t ;  c t t  ^ + r :q -  \ r  L / ,  - u \ . J - 1 ) !  j !
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511."ut" (' )+i,o;. ,',] = ̂  t[orl" 1- vnl ei, (')] *

+  P ( r ) ,  r  e  [ t ,  t + a t  J

'  Employing the weighted residual  approach,  we require the

zero value of  an integral

nul t ip. l ied by a certa in weight  funct ion :

- n

whe re  F (z )  i s  a  we igh t  f unc t i on .  Le t ' s  emp loy  t he  6 * f unc t i on

iY ( ; )=6 ( i - ( t +z ) )  as  a  we igh t  f unc t i on .  Such  we igh t i ng  i s  ca l f ed

col locat ion at  the point  l+r ,  and the equal i ty

<2 .64)

f  t - 'o I
t l
l0)
vector  XConsider the values of  the and i



AI
f _
|  6 ( z - r - t ) p ( r  ) d r = p ( r + t )  t a k e s  p l a c e .

J
o

The zero value of the

i
weighted residual  p(z+t)  is  obtained by select ing the valuer Xr j

i =  m  i n  t he  (2 -641 .  D i f f e ren t i a t i ng  k  t imes  t he  equa t i on

(2.62) and expressing the der ivat ives i  t t .o, rgtr  X ,  we obtain the
relat ion :  :

( k )  - ! . .  { i )
x  =  aux  +  )  Au - ' p  k=U,p  (2 .6s )

L-
]<=0

Subs t i t u t i ng  ( 2 -65 )  i n t o  ( 2 .64 )  and  cons ide r i ng  t he  ob ta i ned

equat ion at  the col locat ion point  T = fAt  ,  we obtain

n  I r
P r A -

r - 1 .  l l  r - - .  .  
( ! ) l

)  l3 l " -  A o;"1 la*xo+ )  nu- ' r  |  +
: - : r  J L  L 1  

)

h l ,
P . I

\-[ .o.- A o:.1 [.ru*.* f o'-" ' i ' ll -1""  ^"0 'J(^ , -  /  )
k=0 i=1

From the  equa t i on  (2 .66 ) . t he  vec to r  X1  i s

the known values of Xo and the load vector Q .

obtained f rom the re lat ion

z p * r B r x r  
=  

r o * n B o x o  *  P r o * , ( 2 . 6 8 )
4 . . _ ,

where

k
\ _ r  

( !  )

p lace  o f  t he  t e rm  )  a " - 'P  t t r e  t e rn  ( 1 - f )Po+  {P ,  ( i f  k=1  )  and
L-

, L = r  _  p _ p

the  t e rm  l u - ' f ( t  - (  )P^+  rP . l  *  o t< - z  
' r  - z  

( i r  Kz l l  can  be
L '  o  1 l  A t

employed. The ampl i f icat ion matr ix  E of  th is a lgor i thm is

obtained from bY the relation

= p  t 2 A A \

obtained employing

The vector  X is

-  ^ - 1
L  -  

z p + t " t  z p * L - o
<2 .6e t

The formulae of  the numerical  schemes of  the 1- th,  3-rd,

5- th '  order are presented expl ic i t ly  in the Appendix 1 '  3 '

N o w w e i n v e s t i g a t e a s y m p t o t i c f e a t u r e s o f t h e n u m e r i c a l

s c h e m e s p r e s e n t e d i n C h a p - 2 - 3 - ' 1 , 2 ' 3 ' 2 , 2 ' 3 ' 3 ' T h e r e s u l t s

presented below are taken frorn [ 1 ] .

In Figr .2.3,  2.4 the numerical  darnping and per iod elongat ion

cha rac te r i s t i c s  ob ta i ned  by  t he  f o rmu lae  (2 ' 28 ) , ,  ( 2 ' 29 )  a re

presented- Ttre curves 8 in Fig.2-3,  2.4 correspond to a damped

osci . l -1ator  case at  the value h = 0.5 .  The negat ive values of  the

numerical  damping s igni fy the arnpl i f icat ion of  osci l la t ions wi th

regard to the analyt ical  solut ion.  In Fig.2-5 there are presented

the values of  the norm of  the ampl i f icat ion matr ix  at  the f i rs t

t ime integrat ion stePs at  oAt+o .

The large values of the norm of the Nenmark's scheme

ampl i f icat ion matr ix  are caused by the value 1 of  i ts

spectra l  radius.  However '  th is c i rcumstance doesn' t  imply

overshoot ing of  the displacenent values due to a lower t r iangular

form of the matrix at the values oAt + o taking the form

obviously,  aI I  the exponents

lower t r iangular  form-

B =
z p *  a  I

R _
z p +  {  o

ol
^ l

" l- 1  I

A' of the matrix A Preserve the

f 0 0
o=  l - t  

-1
L - 4  - 4

p .
F H l . ^  ^  |

)  l 3 : . -  A  3 ;  I  A^
/  t  k L  x t l

)

p .
c - l r  I
\  l ^ P  r  a P  I  r k-  
)  l o , . o -  ̂  r k o l  A
- - t  )

l ,  \  k  , , , . l
l l : P  r  n P  |  \  ^ k - " p  

II  l " u ' -  '  " k , l  /  |
l \  |
L 1 = 1 j
L. ion values are interpolat .ed

t+At I  ,  and in t .he re lat ions

p

\-
t-

P  = P -
2 P *  t

( 2 . S )

I inear ly

( 2 - 6 8 )  i n

Usual ly  the exci ta

du r i ng  t he  i n t e r va l  I t ,



Fig.2.3 Damping character is t ics of  some nr:mer ical  schemes:
1  -  n o u b o l t - ,  e r = 2 ,  o . = 1 1 / 3 ,  e . = 6 ;  (  t l o = 6 ,  O n = 1 : / 2 , 0 . = 2 ) ;

2  -  c u b i c ,  €  = 2 1 3 ;  3  -  W i l s o n ,  O r - 1 - 4 ,  8 . =  1 - 4 ' ,  € z = 1 - 4 - ,

( r ; o = t . 4 '  ,  1 3 r =  1 - 4 '  ,  l ? r = 1  - 4  ) ;  4  -  N e w m a r k ,  ( ? o =  0 n = l  / 2 ;

5  -  l i n e a r ,  (  = 1 ,  p = 0 ;  6  -  c u b i c ,  (  = 1 ;  p = 1 ;  7  -  f i f t h  o r d e r
scheme ,  I  = ' l i  p=2 ;  8 -SS21 ,  €n=O.=1 /2  f o r  t he  da rnped  osc i l l a t o r ;

3. TRANSIENT ANALYSIS OF NONLINEAR ELASTIC STRUCTURES

In th is chapter  t .he numerical  integrat ion schemes of  l inear

dynamic equat ions are extended in order to deal  wi th nonl inear

ones.  For the dynamic equat ions wi th a nonl inear term only

expl ic i t  schenes can be inmediately adopted- Employing the

impl ic i t  schemes, the values of  a nonl inear term are approximated

by means of  extrapolat ion,  or  i t  is  necessary to solve a

nonl inear a lgebrai-c equat ion system aL each t ime integrat ion

step.  fn t ine domain the dynamic response is represented by a

super imposing the t ransient  dynamic compl iances of  the l inear

part, regarding the values of a nonlinear term as ext.ernal force

evaluated by means of  extrapolat ion or  by solv ing nonl inear

a l geb ra i c  equa t i ons .

For the di rect  numerical  integrat . ion of  eguat ions of  not ion

of  the strucLures wi th uni lateral  constra ints case or iented

algor i thms are developed enploying the Lagrangian mul t ip l ier

approach and supposing Lhe ninimrm work of interaction forces for

making correcLions upon the ve1oci t ies and accelerat ions when the

structure meets the constra inL,  A numerical  scheme is presented

as an extension of  t .he general ized Newmark's scheme. Equat ions of

mot ion of  the strucLures wi th k inemat ic pairs interact ing by

normal,  obl ique impact  and s l id ing f r ic t ion forces are presented

employing the constra ints upon nodal  d isplacements,  veloci t ies

and accelerat ions.  Arbi t rary values of  the impact  coef f ic ient  of

rest i tut ion can be presented by select ing appropr iate r ight-hand

side terms of  the constra int  re lat ions.

3.1 DIRECT TNTEGRATION: SOLUTION OF NONLINEAR EQUATIONS AT

EACH TIME STEP

Cons ider  the  fo l low ing  s t ruc tu ra l  equat ion  o f  mot ion :

0rAt
- - 4q

0,E

0,4

llEil

F ig .2 .5  No rms  o f  amP l i f i ca t i on
matr ices of  some numerical
schemes ,  no ta t i ons  as  i n  F i g -2 - :

l d  U +  C  U +  K  U  =  v (  U ,  U  )  +  R ( t ) ( 3 . 1 )

0 0,2 0,4 c,loAt

F ig .2 -  4  Pe r i od  eJ -onga t i o r .
of  some numerical  schemes,
n o t a t i o n s  a s  i r l  F i g . 2 - 3

"  The  t em [ l (U ,U )  i n  t he  equa t i on  (3 ,1 )  r ep resen t s  a  non l i nea r

part  of  the structure,  s igni fy ing a vector  of  forces caused by an
: i r* teract ion of  a l inear st ructure wi th the surrounding or

o the r  bod ies .

6 2
O J

wi th



Applying the n-th order generalized Newrnarkrs scheme to the

equa t i on  (3 .1  ) ,  we  ob ta i n  t he  re l a t i ons  s im i l a r  t o  ( 2 .55 ) ,

( 2 . s 7 ) - ( 2 . s 9 ) : r';'*,-],.. ( 3 .  s )

consl.dering the vector X = as the new unknown.

Applying the Runge-Kutta schemes or the explicit versions of

t he  SSp j  scheme  ( see  ChaP .2 .3 .1 )  t o  t he  egua t i on  (3 .5 )  i t  i sn ' t

necessary to solve nonlinear equations. However' a shortcoming of

such an approach is a conditional stability of a numerical

scheme. To be exact, an unconditional stability of an algorithn

applied to a linear structure doesn't grrarantee the unconditional

stability when applied to a nonlinear sYstem. It can be shown,

['ll, that the numerical schenes unconditionally stable for linear

structures become only conditionally stable when applied to

nonlinear structures. lileverLheless, in many practical

appl icat ions nonl inear i t ies don' t  impose such severe l in i ts  upon

the integration step, as an explicit scheme does. Therefore for

integ6atingnonlinear structural equations iutplicit numerical

schemes are preferalrle.

Pseudo-force aPproach.  The vecto.  V = Y(U,U) is  considered

as arn external force vector acting upon a linear elastic

structure, and its value at the time point t+at is extrapolated

linearly as

( 3 . 6 )

In this case there is no need to soJ.ve nonlinear eguations-

The obtained numerical  scheme, based upon the re lat ions (3-2) ,

( 3 .3 ) ,  ( 3 -6 ) ,  i sn ' t  cumbe rsome  and  can  be  eas i l y  p rog rammed .

However, the accuracy and stability of such a scheme depends

significantly uPon a nonlinear function. Therefore the

pseudo-force approach is applicable only if the nonlinearities

are not  severe.

I 
t-'o 

: 
t-'* 

l
l " )

u..o, = Ui + ui au.o,

where  A =  b lM +  bxc  +  bxK,  Gt*a t

A oU*o. = C*at * Y( Ur*o.,U.ror)

, J { = U r l t ,

( 3 . 2 )

(3  . 3 )

= R,*a t -  (M*q . -  c*q . -  Kxqo)  ,

a I  =  su -  u iq .  ,  R=1 ,2  . . ,

t;l
h x - t . X - n h X - x a
" O -  

'  t  ! O  
-  v  r  w k  -  e k l v o  ,

n
F -  J  a t j - k  r f - - kq- = 
L u,t3=x-X , br.= Fr. ib-.. , k=o,n

J &

The value of  the r ight-hand t" . .  Cr*o.  at  the t ime point

t+at 6s*n6s upon the unknown values \,o., U.*o., therefore for

obtain ing the soh.r t . ion of  the equa.Lion (3. : )  i t  is  necessary to

approximate the value W(U.-a.rU,*ar)  employing Lhe values U, U at
the previous time points. or to solve the nonlinear matrix

equation (3.2) at each time point. The folJ.owing approaches fpr

obtain ing AU.*o.  are possib le.

Application of explicit numerical schemes enables to avoid

the di f f icul t ies re lated wi th the solut ion of  the nonl inelr

eguat ion (3.2r ,  i f  the nonl inear funct ion [ /  depends only upon ihe

d i sp lacemen ts  U  ,  i . e . ,  i f  lV  =  1 { (U ) .  Se t t i ng  t he  va l - ue  o f  t he

numerical scheme parameter [?o=0, we obtain U,.*o.= qo from the

re l a t i on  (2 -52 ) ,  and  i n  p l ace  o f  ( 3 .2 )  t he  egua t i on

( b . l v l  +  b , C ) ^ U , * a , =  \ _ o r -  
( M  Q , +  C  q , +  K  % -  i V ( q " ) )  ( 3 . 4 )

i s  t o  be  cons ide red -  j ,  .  
"

From the l inear eguat ion (3.4)  the value of  the unknown

vector  oU.*o, .  i "  obtained.  r f  the equat ion contains a nonl i r iear

term \ I /  = i lJ(U,U) ,  i t .  is  necessary to present the equat ion (3. .  1)

in the form

6 4
6 5



Tangential linearization- The nonlinear equation
considered as

I ( a U . . a . ) = 0  ,

where !(aIJ*ar) = A ou.*a.- G.*or- I l( ur*o%*or,\*ou.-or)

During each tine step the function f. is replaced by a linear
function of AUt*at, obtained by linearizing the function I at the
value aur*ar= 0 . rhis linearized function is presented as

( 3 . 2 )  i s

( .s .7  )

( 3 . s )

i = r (o )+ [ - j r - l  I
l a t , . r r  r  I  l o u . - o .  

( 3 ' 8 ) '  - ' r

1".-".*or, lo.r*o.="J

I t  is  necessary to obtain the value AU 
t*at  sat is fy ing the.

equation

I ( a U . * o . ) = 0 ,

Obtaining the corresponding derivatives

OT

a (aU. *a. )

dUr*a, au

u(oU.*or )  o  '  
a (AU.*a . )  " '  '

and havingr in rnind, that

aW I ar l
'Gu*^J 

l^-t+at=o ;f ;=;.'
a g l

t;*oJ lo..*o.="
a W l

= - l
^ "  I  U = U
o u l ,  .

I  u= . t

the l inear ized eguat ion (3-9)  is  presented as

{*o, oUr*o. = Gr*a. + l{|( q, U.) , ( 3 .  1  o )

6 5 6 7

-where i.-o.=blu*u*c+olr,

The accuracy of the tangential linearization at evaluating

\.o. i= significantly better, than the accuracy of pseudo-force

approach. However, in the case of severe nonlinearities the

integration step value must be sufficiently small in order to

obtain a satisfactory approximation of the nonlinear function

variation by its differential during one time step.

In order to avoid very smal-J- integration steps and to

entrance the approximation accuracy of a nonlinear function, aL

each t ime step the nonl inear equat ion (3.2)  can be solved.  I t  is

carried out iteratively, obtaining successive approximations of

t he  exac t  so l u t i on  o t l * o r ,  i = j , 2 , , , .  -  The  add i t i ona l  compu ta t i on

tini6 regui-red at each tine step for solving a nonlinear equation

is compensated by an obtained possibility to ernploy significantly

larger time steps. The following approaches are possible.

Sinrple i terat ion.  The eguat ion (3.2)  is  solved by obtain ing

successive approximations AU 
'*o. 

from the algebraic equation

A au : : l  =  G , . *a .  +  1 . { l (  { *a t ,U l , a . )  ,  i =0 ,1 , . . .  ( 3 .11 )

where 1 - the iteration number.

For obtaining a first approximatior A{*a. it appears reaso-

nab le  t o  app l y  t he  re l a t i on  (3 .6 )  as  W( { -o . , { - a . )  -  2Wr -  W,_a , .

The convergence rate of  a s imple i terat ion isn ' t  h igh,  and for

certa in nonl inear funct ions i t  may diverge.  rn some cases the

"osci l la t ing" i terat ive process can be damped, in p lace of  U: l i ,

a s  t he  nexL  app rox ima t i on  emp loy i ng  aU ' * f , . + ( ' 1 -o )U i . a , ,  whe re  O<q<1 .

c=c-eg l  ,  f r=K-aYluu l,ru, uu 1,,.u,



Newton-Raphson i terat ion for  the eguat ion (3.7)  is  def ined as

, , i _ r  . , , i  i  " u  I  l - ' r q  ou ; .o , )  ,  ( s .12 )AUt*at  = AU,-a,  -  
l rGU,_^)  l^ , "  I  

t

L , i+atj

and can be presented as a relation

l i . , , i * rA  ^ U t * a t  =  u t * a r  *  n r  i { * o r , U i * o r )  ,  i = 0 , 1 , . , .  ( 3 . 1 3 )

For the first approximation aUo*or= 0 is emp1oyed. usually

only few i terat ions are necessary.  The J.ess is  the integrat ion

step, the better is the first approximation for solving a

nonlinear eguation. However, the additional computational time is

necessary for  obtain ing the values of  der ivat i t " .  
uW 

,  4 at  eSch-
aU dU

t ime step.

Application of guasi-Newton rnethods for solving the

nonl inear equat ion (3.7)  is  based upon a subst i tut ion of  . the

dynamic eguilibrir:rn equation by a functional. minimization problem

- ; -  r - i  ' c T r  Y !  i  d' -  solved employing the fo l lowing i terat ion [ '12]  :

^ T T ! + 1  -  r T T i  -  c !  r f r  F  r r a T T r  \^ t t * a t  -  a u a . 4 ,  -  L ' .  l  \ ^ u " . 6 1  / ( 3 . 1 4 )

The matrix IIlt is obtained recursively from the relation

q '=  , t  +  wYr )  q1 .< t  +  vw l )  , ( s .  1 5 )

3.2 TTHE DOMAIN APPROACH

The dynamic response of the structure is presented as a

superposition of transient dynamic compliances of the linear part

of the structure. Consider the dynamic compliance matrices S ,

each time

( 3 .  1 ?  )

t t '  ' ' th .  
nonr inear terrn Y( U,  U )  i "  presented as an external

force depending upon the displacements and velocities, and a

recursive re lat ion for  obt .a in ing the displacements at  the t ime

point n+1 is

_uo  ^uo
S- " ,  S - -  o f  t he  l i nea r  pa r t ,  de f i ned  i n  Chap '2 ' 1 -  A t

point iAt we define vector P. as

-l_
p  - \  q .  p' .  t i  -  

/  
- i - j r . j  t

=

where the lower indices denote the tirre point number'

6 ,

and S is obtained regarding the condi t ion

- T u  t : - l  t T -  -  n<  \  f r  t  a  -  v  t
L - t  a + t

The advantage of the quasi-Newton methods consists in

reducing the computat ional  ef for t  by employing the recurs ively

obtained matr ix  I i  in  p lace of  Lhe der ivat ive matr ix  =.H- -
O  ( A U , ,

. k
" ^uo " -uo i r P- . * t-- s^-.-,w, * sow^*, 'U ^ * n =  S . * n U o  *  J . * r U o -  

n + r  /  n + a - J  J

n  =  0 , 1 , 2 , , . .  ,

where the notat ion Y.  = f i (  U. ,  U,)  is  emproyed'

For obtain ing the value U * .  i t  is  necessary to solve the

nonl inear equat ion (3.1S) at  the known values q 'U. , I l l , ,

i =g r i , 2 , . . " n -  r f  t he  va lue  U . *n  i s  known  a l r eady ,  t he  va lue  U -  -

i s  ob ta i ned  f r om the  re l a t i on  (3 -3 ) .

Denot ing the terms of  the equat ion (3.18) indepenclent  of

q *n ,  U . * ,  t h rough  4 * r ,  t h "  equa t i on  (3 -18 )  i s  p resen ted  as

\ * n =  Q ^ . .  +  S o l {  ( U  * 1  ,  U . * , )  ( 3 . 1 9 )

For solv ing the equat ion (3-19) the approaches presented

Chap .3 .1  can  be  aPP I i ed .

Pseudo-force approach resul ts in the re lat ion

4 * . =  Q ^ * r  +  S o  (  2 I I " -  I l ^ _ . ) ( 3 . 2 0 )

( s .  1 B )

-  f  . ,q  f  t l - r i l t l  - "  6
where v = q_, 1 1 +

L "'-'l Ca-l'1 * w' = ' '
= I (^[-a. )

a n

( 3 . 1 6 )



Tangential linearization of a nonlinear function results in

the relation

A" (U^-r- U.) = U^ - %., 
- SoV" ,

' t ' " ' "A .= I -so[+  |  *b .  +  |  l
L uu l.^.u^ 

' "' af 1,..u^ ,l

Simple i terat ion for  the equat ion (3.19)

U::l= q.. + SoY (Ui*,, Ui*,)

Newton-Raphson iteration is presented as

r r  / y r i + 1  -  - iA; (u:_; -  U.)  = U^ -  Q._,  -  S.s:  (3.23)

3.3 ANAI.YSIS OF STRUCTURES WITH LOCAI. NONLINEARITIES

The dynamic analysis of a transient motion of large

nonlinear structures requires large amounts of computational

ef for t ,  G.9- ,  the Newton-Raphson i terat ion for  a nonl inear

algebraic equation requires obtaining a derivative natrix at.ea,,ch

t ime step.  I f  only few d.o. f .  of  a structure are subjected to a

nonlinear interaction, the computational effort can be reduced by

applying substructuring techniques.

Let's consider the equation of motion in the form

I  M,,M,, l  P, l  .  l t , ,c, , l  fu. l  lT,,  K," l  lU, l  I  O I [R' l
|  |  t . .  t + l

L M,,M,"J LU,J Lc",c,,)Lr;l.L^;: -,;l L';l=L*,,u,,u",j*L*;1, 
t'''o'

where two substructures denoted by the ind.ices "1 " and tt2tt are

distinguished. The nonlinear interaction forces depend onJ.y upon

the displacements and velocities of the substructure "2", and

they are applied only upon the substructure "2" . The eguation

(3.2)  def in ing the general ized Newnark 's scheme for  the equat ion

(3-241 here acquires the form

where the values of the vectors U and G correspond to the time

point t+at

From the f irst eguation (3.25) the relat ion between aU- and

aU is obtained as
2

a q = - A , i A , , a q + A , ] G .

Subst i tut ing (3.26) into the second equat ion of

obtain

(A,,-A.^A;1A,. ) ou= - G, - ArrA,lG, + Wz( U2, Uz) G.27)

If the nuniber n of nonlinearly interacted degrees of

freedom (the length of U") is small in comparison with the total

st ructure dimension (D=((  [ . *n l ,  the employment of  the

substructur ing re lat ions (3.27) '  (3.26,  reduces considerably the

computat ional  ef for t  in compar ison wi th the re lat ion (3-2) ,

because the matrices A."-ArrArlA., and A;: can be obtained in

advance during an initial operation. The algebraic equation

(3.271 to be solved at  each t ime step is  of  the dimension nrs.

!n place of IIxII. The displacemenL increment AU, can be obtained
'applying 

Erny approach from those presented in Chap.3.1- So, the

Newton-Raphson i terat ion for  the equat ioo (3-27) is  def ined by

the relation

i i  rTr"  *1 = e
"  

n a a  u u a  
z

w h e r e A  = A  - A  A - ^ , ^
z z  z z  a ,  , * - ! z  '

Having obtained the value AU:*t  ,  the value ou: . t  fo l lows

f rom the  re l a t i on  (3 .26 ) .

I f  the equat ion (3.24) in t ine domain is  considered,  the
, '. ' ...: ' . .

dynamic compl iance matr ices S,  Sto,  Sto and the matr ices P,  Q,

d e f i n e d  i n  C h a p . 3 . 2  b y  t h e  r e l a t i o n s  ( 3 - 1 7 ) - ( 3 - 1 9 ) ,  a r e  p r e s e n t e d

as

( 3 . 2 1  )

presented as

<3.22)

lll,"1 F:l =l::l . [.,,1,,,,]

l D  / T T !  T T r \  i - n  I
a a \ v r t  v a l  I  f - v r l r r . r ( s . 2 8 )

( 3 . 2 s )

( 3 . 2 6 )

( 3 . 2 5 ) ,  w e

+

A
z

^ a v a \ l l
_ i  _h 

-_._ 
_h 

, ,2 
e =C _a [ ,c.= n..-"ofr  -"r4 '  -z -z --z!-- !L ' '



3.4 DIRECT INTEGRATION OF STRUCTURAL EQUATIONS WITH

I'NILATERAL CONSTRAINTS

Consider the structural equation of motion

M i i  + c U + K U = R ( t )  ,

with the constraints upon the displacements

D T T < d

f f  the var iable U wouldn' t  vary in t ime, a corresponding
static probrem would appear as the functionar mini-mization probrem

/  h  i  _  t  t , - f - . _ _ T T T p  
\I  u  r  r r  \  , .  U  A  U  v  r \  / ,t -

I  w i th  the  cons t ra in t (3 .33) .
( 3 . 3 4 )

We introduce the penalty function B

component of which is defined as'

- 1B .  =  
z  k  ( p  u  -  d o , ) ' ( p i u  _  d o i )

' - I

'  r B . i f  P . u _ d o > 0 ,
w h e r e B = { ! -

L O , otherwise

The minimum condition of the functional

K U = R - I  , ( 3 . 3 6 )

-D -H- aB.
w h e r e  I = 1 3 = \  I

d u  l _ a U  
,

a B .  f  k  p  r ( D  T T  ^  \
"  -  ,  i  ' f r U  -  o o i )  '  i f  P  U  >  O  '

aU L O , othenise

Adding the dynamic terms to the equation (3.36), we obtain
the eguation

I Y I U + C U + K U = R - I ( 3 . 3 7  )

where I is the noda1 force vector produced by constraints upon a
structure.

-  
I f  t he  vaLue  k  i n  t he  exp ress ion  (3 .35 )  i s  su f f i c i en t l y

larqre,  the solut ion of  (3.37) wi I I  not  v io late the constra intt  ( 1 . : l )  mo re  t han  t o  i n f i n i t es ima l  va l ue .  Howeve r ,  ( 3 .33 )  imposes:  'constra ints 
only upon the displacements,  the veroci t ies and'accelerations 

of the structure depending upon the features of the

^ la.lr r  =  |  l .
t n  I

L-'l

(3  . 29  )

( 3 . 3 0 )

from the

dimension

into the

vatue 
- 

U

y approach

for the

( 3 . s 1 )

D

t-

( 3 . 3 4 )  i s

( 3  . 3 s  )

(3  . 32  )

: . - _  ! . '

(3 .33 )

where M, C, K of  d imension nxn and P of  d imension pxn ,  PSII , - , .dre
constant  or  expl ic i t ly  t ime-dependent matr ices,  and U, 4,_ ,  of

dimension Ilxl - vectors of nodal displacements and external

f o r ces .



penal ty funct ion B.  (  e.g.  ,  in  the expression (  3.35 )  the

arbitrary value of k can be employed, and the penalty functltrn

i t se l f  can  be  de f i ned  i n  t he  f o rm  o the r  t han  (3 .35 )  )  .  ^ ;

In order to define completely the motion of the system

approaching the constraint, the auxiliary constraints should be

employed. In general, the notion of the structure is defined by

the initial val.ues of its displacements and velocities and by zln

external forcing J-aw. If the numerical scheme is applied, the

status of the systen at the next time integration point is

defined by the values at the current tine point of displacements,

veloci t ies,  accelerat ions and,  perhaps,  h igher t ime der ivat ives

of displacements, depending upon the order of an integration

scheme. It follows, that the auxiliary constraints upon the

veloci t ies,  accelerat ions,  etc.  should be used together wi th

those presented by (3.33)upon the displacenents-  They should be

imposed upon a structure in the case when the constra ints (3.33)

are act ive,  i .e. ,  when they are sat is f ied as an egual i ty .

Apply ing tagrange rnul t ip l iers.  Let 's  consider the equat i6n

o f  mo t i on  (3 .32 )  w i t h  t he  cons t ra i n t s  ( 3 .33 ) ,  and ,  i f  t hey  a re

sat is f ied as al r  equal i ty  ?U-d ^=0,  Iet 's  impose the auxi l iary

constraints upon O time derivatives of the displacements U :

( k t

D I T - d  l r - l - - ;.  
"  

-  
"r .  r  + -  |  ,nr

fgngtional is increased in the case of satisfied constraint

Piu-doi  3 0 ,  therefore th is constra int  shouldn' t  be regarded'

lti 'e value of the i-th component of the vector Xo must be

' redef ined as fo l ] .ows:

(  r  .  i f  \ - .  Z  0 ,
j ' - i :  x  =  I  

o r  '  o r  ( 3 , 4 0 )
o J  

L  o  , o t h e r w i s e

To be accurate, the decision of regarding or not the i-th
.  

,  ' 1  :

.cgnstra int  
P U-do =O of  the svstem (3 '39) must  be carr ied out

' i terat ively,  
solv ing the system (3-40) several  t imes'  The J- th

r,ow of the matrix P is deleted, if at the current iteration the
: . .'va lue 

x .< 0 is  obtained.  r t  is  re included into the matr ix  P ,  i f
: i  , .  o J

Et sonre other iteration the constraint upon the displacements

.p.U-O^.<O is v io lated.  The i terat ion is  over,  when al l  the \o j '

. i  r  o r'oUtai tea 
by solv ing the system (3-39),  sat is fy the condi t ion

tr^,>O, and at the same tine no constraints P U-do s0 are
-  o J

ri.Lr.t"a- A physical sense of the term -plxo ls a force' produced

upon a structure bY constraints.

.  Supply ing dynamic terms to the svstem (3 '39) and the

auxi l iary constra ints (3.38) '  we obtain the equat ion -ystem

( 3 . 3 8  )

muJ.tipliers

displacements

(  3 . 3 4 )  f r o m

M i i + C U + K U + P r \ o = R  ,

D T I  < d' , f ,  -  * o  '

P U  = q . ,  k = T , m

t
j
L

( 3 . 4 1  )If U would be time-independent, the Lagrange

can be enrployed in order to obtain the values of

satisfying the minimurn condition of the functional

the equation system

- p

- . 1
(3 .  Ee)

where \o is  the Lagrange nul t ip l ier  vector  of  d inension pX1. Each

negat ive value \o.  of  some j - th component of  the vector  -  \o,

obtained by soJ.v ing the system (3.39) s igni f ies that  :  the

corresponding j - th constra int  is  inact ive.  Real ly ,  only at  '^ ; . . )O

the unsat is f ied constra int .  P U-do. i0 increases the value of  the

funct ional  (3.34) by the magni tude \o j (P U-do ) ,  and requiresr the

expression P U-do to be zero.  I f  t ro,(O, the value of  $"

Le t ' s  i n t eg ra te  ( 3 .41 )  numer i ca l l y -  I f  a t  t he  t ime  po in t

t+at  the second relat ion of  (3-41) is  sat is f ied as an equal i ty '

and the th i rd isn ' t  sat is f ied for  some values of  k '  the

correct ions upon the values of  veloci t ies,  accelerat ions and
(  k )

. 
higher time derivatives U must be made. The time interval for

these correct ions is  reasonable to assume very short ,  as i t  is

trsually supposed by considering a dynamic contact of rigid

.  bodies.

- I ; j , .  Assume that  the correct ions of  the veloci t ies are carr ied

: .out .dur ing the t ime interval  at"  that  is  very short  in compar ison

. , , l i th the integrat ion step- The veloci t ies at  the beginning and

end are represented by U- tt'a U = U-+ aU ' accordingry to the

r K U + P r r
l o

I  tu



Carnot. 's  theorem, the change of  the k inet ic  energy of  a structure

because of introducing a new constraint eguals to the kinetic

energy of lost velocities I aUtU aU , The ].oss of energy is

caused by the work done by contact forces during the tine
interval At6 . It appears natural to reguire, that the motion of

the systen would correspond to the rnininum value of this work,

or, what is the same, to the nininun change of the kinetic energy

of  the structure-  At  the end of  the t ime interval  ( t , t+At. )  the

constra ints upon veloci t ies must be sat is f ied,  i .e. ,  i t  is

necessary to solve the problem

After  d i f ferent iat ing in t ine the f i rs t  equat ion of  (3-41)

and writing the relations for accelerations similar to

(3.42)-(3-47) for  veloci t ies,  we obtain the Lagrange nuJ. t ip l iers

\ and the acceleration increments AU as
2

The same presentat ion of  the problem in the form (3.42) can

be obtained by employing the momentum conservation theorem as

nin l ^UrM ̂U ,
with the constraint p aU = - P U-+ d

t  + A t
. l ^ '

M au  =  |  
- <  

n  -  K  u  -  c  u  )  d t
J
t

\ z=  (p  M- rp r ) - i (  p  i i - -  d , )  ,

^ i i  =  -  M- 'P ' (P  M- lP r ) -1 (  P  i i - -  d , )

( k )

In the same way we obtain all ^.k and aU ' k < n for an

arbitrary order I1] of a derivative. The physical sense of the

Lagrange nul t ip l iers x. ,  xr ,  \ " r . , .  is  the normal  i rnpetus,  nomal

f ,orces,  der ivat ives of  normal  forces,  etc. ,  represent ing the

action of constraints upon a structure during the time interval

( t ,  t+^t.  )  .
.  I t  fo l1ows f rom the re lat ion (3.47) '  that  the impetus of

constraint forces in global coordinates during the time interval

( t ,  t  + At . )  is  obtained as

S , -  -  P t S * =  -  P t ( P  M - ' P t ) - ' (  P  U - -  d . )

The forces of constraints enabling the acceleration

(3.49) dur ing the t ime interval  ( t ,  t  + at")  is  def ined as

r ' ,= -  Prr '*= -  P'(P M-'P')- '1 I  i i - -  o,  )

Numerical integration scheme is obtained by expressing the

values of displacements and their derivatives at successive

discrete time points employing the relations of the m-th order

generalized Newmark's scheme. The sequence of steps for obtaining

the values U.*o. ,  U,-o, ,  {*at ,  .  ,  .  at  the t ime point  t+At

.employing the values Ur,  U. ,  U. ,  .  .  .  at  the t ime point  t  are

def ined by the Algor i thm 2-2 .  Expressing \ofrom the f i rs t

equa t i on  o f  t he  sys tem (3 .41 )  and  rega rd i ng  t he  re l a t i ons  (3 .47 ) ,

( 3 .49 ) ,  t he  equa t i on  (2 .55 )  and  t he  f o rmu lae  o f  t he  s tep  3  o f  t he

AJ.gor i thn 2-2 are presented as

A a U = C - P t x o  )

<s:42)

(3 .43  )

the
I t o

this

( 3 . 4 8  )

( 3 . 4 e )

( 3 . s 0 )

change

( 3 .  s 1  )

The r ight-hand s ide of  the equal i ty  (3.43) presents

impetus of the internal and external forces, that is assumed

be zero because of very short duration of the time interval

and the f in i te values of  veloci t ies arrd d isplacements.  In

} .  =  { P  M - t P r \ - t (  P  
'

,  r  u  _  d . )  r

a u  =  -  M - ' p t ( p  M - t p t ) - ' (  p  u - -  d , )

way the equation MaU=O is obtained, that can be presented as

functiona.l- rninimization problem nln .foUttrl"U with the

cons t ra i n t s .  As  a  r esu l t ,  t he  same  sys tem (3 -421  i s  ob ta i ned . .

The funcLional minimum condition appears as

( 3 . 4 s )

So lv i ng  t he  sys tem (3 .45 ) ,  we  ob ta i n

-  , .  . i ,  - r .
I  

m  a u  +  r  A r  =  u

I  p ^u= -pu -+d .

( 3 . 4 6 )

( s . 4 7  )
1 2  q 6 \ '



w h e r e  A  =  b . M  +  b . C  +  b o K ,  C  =  
\ * a . -  (  M  q = +  C  q r +  K  q o ) ,

U = {+ ul au , (3.52)

( k )  ( k )  ( k )

U - =  l i + U f  a U ,  U =  U - - f r f - . p ' x u , k = T , n ,  ( 3 . 5 3 )

where the Lagrange multiplier vectors are obtained from the
re.].ations

I t 's  worth to ment ion,  that  the Lagrange mul t ip l iers t ro

evaluate the impetus of normal interaction forces rather than
their values that go to infinity when the finite rnass points are
interacting. The impetus of the normal interaction forces S*
during the tirne interval egual the integration step At are
approximately obtained as

\ o =  ( p  A - ' p t ) - ' 1 p  A - G -  d o )

r . u=  (p  M- 'p ' ) - ' {  t ' t : -  q )  ,

T t  J  a t + a t

s : ' o ' =  
+A t+ \ t *a t

,

1 - ? . . . . :
K =  r r l l l

(3 .  s4  )

( 3 . 5 s )

The normal. forces I* ensuring the dynamic equilibrium at
the time point t+at are obtained as

I r + A r  - t + A r  r + A t
*  = r  -  + ^ - - -  ( 3 . 5 6 )

The  mean ing  o f  t he  re l - a t i ons  (3 .55 ) ,  ( 3 .56 )  i s  exp la i ned  i n

Fig.3.1 assuming that  the veloci ty  and accelerat ion correct ions

are carried out during the time interval significantly shorter

than the integrat ion step.

In general ,  i f  the number of  constra ints exceeds uni ty,
( i .e- ,  number of  rows of  the matr ix  P is  more than one),  at
each time point an iteration defined by the following algorj-thm is
necessary -

F
-t +dt
F' N

)t  +dt

r r
FN

t*At-dts t+At t

Fi9.3.1 Time-l-aws of the contact force and inpetus during
one integration step

r. ig.3.2 Vic in i ty  of  the contact  points i  and j



A lgo r i t hm  3 .1

1. At the current tine step obtain the values of the

Lagrange multipliers \ur k = m employing the relations

(3.54).  obtain the normal  inpetus and forces S* and I*  of  the

cons t ra i n t s  emp loy i ng  t he  re l a t i ons  (3 .55 ) ,  ( 3 .56 ) .

2. Delete aII the rows corresponding to the negaLive val-ues

of  \  . .  S .  I  f rom the constra int  matr ix  P.
o l '  N l '  N l

3- I f  at  the J-ast  execut ion of  step 2 of  th is a lgor i thn

there were some rows deleted from the matrix P, go to the step 1.

EIse go to the step 4.

4.  obtain th"  
" .1rr""  

t i l ,  
k  = qm enploying the rerat ions

( 2 . s 5 )  

"  

( 3 . 5 2 ) ,  ( 3 . 5 3 ) .

5.  check i f  the constra ints (3.33) are sat is f ied,  taking

account upon the constraints deleted during the execution of the

step 2.  I f  aI I  of  them are sat is f ied by the vectors U obtained

dur ing the execut ion of  the step 4. ,  go to to the next  t ime step.

EIse include into the matrix P all the rows corresponding to the

unsat is f ied constra ints and go to the step 1.

The relations of the numerical scheme in the case of loca]-

nonl inear i t ies.  f f  only a few d.o. f .  of  the structure are

involved into the constra int  re lat ions,  i t  appears reasonable to

present the system (3.41) in a b lock form as

where the tength of the total vector U exceeds considerably the

length of  the subvector  U,  rn th is case the re lat ions (2.55) '

and  (3 .53 )  can  be  p resen ted  as

i  au=d  -P ' ^
2 2 2 2 Z O

U . = - A ; l A , . a U . + A ; : G l ,

where x"= 1r, i ; jr l l -< r. i ;d"- do) , i . .  = A,.-A.,A;lAn,,

'  
:  r - 1 n
\ , = L , - J | J T U T

2  Z  Z t  t /  I  
'

( k )  ( k )

U-=  q I *u IaU+aU,  k=O;n  ,

(2 .ss ) "

( 3 . 5 3  ) '

( k )

, t L  U .  'where A it.= - fr,;t; <r,fr;lrl >

f i . ,  = M.=-M..M.lMrr.

( k )  ( k )
- 1 1  p  t l - _  , i  t  ^  I T  -  l l - l l r

\  r z u z -  
\ /  ,  ^  u l  =  -  l Y l l l l Y l

Il ',,t,".l [!l .lt,,t,,l [,.1 .l*',n,,-1 r'l = r'l
I lt,,t,,l lil'l 

- 
1.",.,,1 Lt,l 

- 
L*",n",1 Lt"l 

- 
Lt,l

I t J L T L
I

|  ,  r . ,  ( 3 , 4 1  ) '
L  p = u . = d u  ,  , < = f f i  ,

Emp l -oy i ng  t he  f o rmu lae  (2 .55 )  " ,  ( 3 -53 ) '  enab les  t o

economize the computational effort, because the major part of

computations is carried out upon the matrix blocks of smal1

dimension.  The invers ion of  b locks wi th the indices rr11rr  is

carried out as an initial operation.

3.5 APPLICATION TO SYSTEMS WITH NORMAL IMPACT

TNTERACTION PAIRS

Obtain ing the constra ints.  Let 's  consider the structural

dynamic contact problen in the case of small displacenents. rf

the pairs of possible contact points are known apriori, the

constra ints upon the displacements are obtained as fo l lows.

Assrne as known the pair of possible contact points i and j

s i tuated on the normal  of  the contact  surface,  Fi9.3.2.  Denote

the unity normal vector directed frorn the point j to the point i

as io , the initial distance between the points as drj, the

displacement vectors of  the points i  and i  . .  
_\=(q", \y ,u.") ,

{= 
(ur- , u,, , u.," ) , where \* , u;" , \" are the cartesian components

of  the displacement of  the point  1.  Taking on account,  that  the

projections of the displacement vectors [ , D. upon the normal

are pr- q = n"q , pr- [, = R"\ , the constraint upon the
o '



displacement components is presented as

f r f i  s f l f i  + d -
o r o l r J

p i  P ( U ) U  +  c  P ( 1 J ) U ,  i f  f ( 1 j )  >  0 ,
f ( 1 j )  =  {  "

t 0 , otherwise

( s . 5 7  )

Using the matr ix  notat ion,  the inequal i ty  (3.57) can be

presented as

t  O O O  . . .  n  n ^  n -  . . . - n -  - n -  - n -  . . .  0 0 0  I  U  s  d  ,  ( 3 . 5 8 ) 1
I  O x  O y  O z t  I  O x  o y  O z t  ! J  '

l i i

where  U =  (OOO. . .u , * \ ru , " . . .u j *u j ru j " . . .OO0) t  i s  the  d ispra-

cement vector of the whole structure- The entire constraint

system is presented as

P  l T  <  . l
o '

where each row of  the natr ix  P is  s imi lar  to (3.58),  and the

elements of the vector do contain the values of the initial-

c l ea rances  d . .  .  i r ' :

Employing rheological models of a contact surface. rf a

contact  interact ion takes place,  i .e. ,  i f  the constra ints (3.58)

are violated, the holding up contact forces occur hindering tlre

penetration of the parts of the structure into each other.

Supposingr that these forces are caused by locaI deformations of

the contact zone, the rheological. nodels of the contact area are

employed. They are usually represented by certain unions of

stiffness and dissipative elements. The contact forces ..are

represented by linear or nonlinear functions of displacements_.and

velocities of the contacting points- The vector of the nodal

contact forces is obtained as

(3 .  s9)  '

where I - tfre vector of normal contact forces, each element

f(1j) of which represents the normal contact force between .the
points i ancl j . If the rheological model consists of the

st i f fness element k.  .  and the diss ipat ive one c. .  connected by
! J  

-  L J

paral leJ- ,  the force f ( i j )  is  obtained as

where P(U) denotes the row of the matrix P , corresponding to

the contact pair ij

Enploying rheological modeJ-s the structural dynamic contact

problem is presented as a matrix eguation of motion with the

.general  non]- inear term (3.1) ,  The sunmary of  the

general ized Newnark 's scheme relat ions for  the equat ion (3.1)  is

presented in the Appendix 1,  Table A1.5.  The computat ional  ef for t

can be reduced, taking on account local nonlinearities.

'Applying the Lagrangre nultipliers enabJ.es to present the

'locatr phenomenological contact model in terms of the impact

rest i tut ion coef f ic ient .  Consider the constra ints as

D T T < d ( s . 6 1  )

atrd assume that  dur ing the t ine interval  when (3.61) is  sat is f ied

to egual i ty ,  the auxi l iary constra ints

( k )

P U = 0  ,  k = f f i  , t ?  A 2 \

are to be taken on account, where n - the order of the

gdneral . ized Newmark's scheme. The sat is fact ion of  (3.61 )  ,  (3-621

as an equal i ty  impl ies the plast ic  contact  condi t ion,  because in

th is case coincide the post- inpact  posi t ions of  the contact

points as weII  as their  veloci t ies,  accelerat ions and higher t ime

derivatives of displacenents that are taken on account by the

m-th order integrat ion scheme, imply ing the perfect ly  p last ic

Iocal  impact  condi t ion.  Employing the second order integrat ion

scheme n = 2 wi th the parameter values 0o= 0r= i  t t i r "  constant

accelerat ion algor i thm),  the constra ints

( 3 . 6 0 )

/ ?  A ?  \

( 3 . 6 4 )

P U s ri* o t

0 ,

8 2



present the perfectly elastic local contact condition with the

restitution coefficient \ because of the constant acceler;tion

value held by the integration scheme during an integration step.

The intermediate values of the restitution coefficiemt 0sRr<1 ..re
obtained enploying the constra ints (  3.63 )  ,  (  3.64 )  and,

simultaneously, the constraint

(3 .6s)

where At is the integration step.

The su:nmary of the generalized Newmark's scheme relations'is

presented in the Appendix 1,  TabJ'e A1-6.

3.5 APPLTCATTON T0 SYSTETqS WrTH OBLTQUE IMPACT AND

SLIDING FRICTION INTERACTION

: . , .
Obtaining the constraints. Considering an oblique impact,

not onJ.y normal, but a-Iso tangential interaction forces are to be

taken on account. ff the tangential interaction is governed by

the Coulomb friction law, there is no sliding until the magnitude

of tangential interaction forces doesn't exceed the critical

value \Ir, where I* - normal- interaction force, and k, - Coutomb

friction coefficient. The difference between the tangential

components of the velocities of the points i and j equals

t (U  -U  )7oJ7o+ l (U j -U  )bo lbo ,  whe re  f r o ,  1 ,  bo  -  t h ree  mu tua l l y

orthogonal unit vectors with fro directed in the normal direction

to the contact  surface,  Fi9.3.2.  f f  there is  no s l id ing,  the

velocities and accelerations of contact points sat.isfy the

constra int

wbere the relations ( 3 .67 , 1 ) impose the constraints upon the

normal,  and the re lat ion (3-67.21 -  upon the tangent ia l

,components of the displacements, velocities and accelerations of

the contact points. In general, the submatrix P, consists of two

submatrices P-= l""t | , 
"o..""ponding 

to the trro perpendicular'  
l ' r u  I

.directions on tfri 
"olrrt..t 

surface, but here we restrict ourselves

with the considerat ion of  two-dimensional  problem, i .e. ,  wi th
D  - n

I i 
If the second order generalized Newmarkrs scheme is employed

( n = 2 ) ,  t h e  z e r o  r i g h t - h a n d  p a r t s  o f  ( 3 - 6 7 . 1 ) ,  ( 3 . 6 7 . 2 1  d e n o t e  t h e

plastic contact condition in both the normal and tangential

d i rect ion.  f .  (3.57-21 onLy the constra ints should be regard.ed,

tangent ia l  forces of  which don' t  exceed their  cr i t ical  values

KI ' . .  ,  otherwise the magni tude ot  the tangent ia l  force is. t  N
'supposed 

to be equal to \F* and sliding takes place. Obviously,

the rows of the matrix P, corresponding to the sliding contact
'points 

are to be deleted.

Obtain ing a system wi th s ingle-valued nonl inear i ty .  The tan-

gential interaction force depends upon the tangential component
'of 

the mutual velocity as

I , = - \ I ' * s 1 g n ( P , U )  , (3 .68 )

where I*, I, - the normal. and tangential component of the

tangent ia l  force.  Enploying the re lat ion (3.68) for  obtain ing

the tangential force, the eguation of notion with the

constra ints is  presented as

D I T < . 1  D T T - n  P i i - n

The numerical  integrat ion of  the system (3.69) is  carr ied

out employing the re lat ions of  the Appendix 1,  Table A1.6,  where

at each time step the nonlinear algebraic equation is solved

iteratively. Employing rheological rnodels for representing the

contact interaction forces, the normal forces I, are expressed

through the displacements and veloci t ies of  the contact  points,

Pi i=- l rn , ru .  ,

rnnn
t v u v  t
f " y z x

l o o o  . . .  - b  - b  - b  . . .  b
y z x

M U + C U + K U = - P ' f '
T T

r  r  , . .  0 0 0 l , k t
Y  z  I  I T -  a )

I  u -  v  r

b  b  . . .  0 0 0 1
y z

R = 1 , 2  ( 3 . 6 6 )

The fuI I  constra int  system is

P T T < . 1  D T T - n  o i i - n
r N v  -  g o  ,  - N "  v  '  r N v  -  v  '

D T T - N  D T T - N
r  f  

T v  
-  v  t

t ?  A 7  1 \

t ?  6 ' 7  ? \
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and  t he  sys tem (3 .69 )  i s  p resen ted  as  ( 3 .1  ) .  Howeve r ,  i f  t he

egual i ty  P'U=O is sat is f ied,  the force I ,  obtained f rom the

relat ion (3.68) is  non def ined- I t  resul ts in the osci l la t ing

behavior of the tangential force values, if the mutual tangential

velocity of contact points is cl-ose to zero. i"....

To avoid this, the function Si$t may be approximated by ooure

s ing le - va lued  f unc t i on t  € .9 . ,  f  a r c t g  t a ( ' ) ) ,  whe re  by  i nc reas ing

the value of  a the bet ter  approximat ion is  obtained.  The re lat ion

(3 -68 )  i s  p resen ted  as

I , = - 4 F * S a r c t g ( a P , U ) ( 3 . 6 9 ) '

Employing rheological models. If the nagnitude of the

tangent ia l  force doesn' t  exceed i ts  cr i t ical  value,  in p lace 'bf

subs t i t u t i ng  t he  f r i c t i on  l aw  (3 .58 )  by  t he  re l a t i on  (3 .68 ) '

rheological mode1s of the tangential contact interaction can be

employed. Similar to the normal. contact models, it is supposed

that the values of the tangential force corresponding . ithe

mulLi-value segment of  the f r ic t ion law (3.6S) (at  P-U=O) are

deterrnined by J.ocal. contact phenomena. The tangential fo.""= f'T

are represented by the linear or nonlinear functions of

displacements and velocities of contact points. If a rheological

model  consists of  the st i f fness element k and the diss ipat ive

one c, .  connecLed. by paral le l ,  the force f (1 j )  is  obtained as

where f*( i i )  -  the normal  interact ion force of  the contact  pair

1 j  ,  Uo -  d isplacement vector  of  the structure at  the t ime poi .nt

of  the beginning of  the contact  wi thout  s l id ing between the

po in t s  i j  -

To be accurate,  af ter  d isconnect ing of  the contact  points

the displacements of  the rheological  model  don' t  become zero

j-nstantaneously.  fn order to account for  th is c i rcumstance i t  is

necessary to consider the equat ions of  mot ion of  the rheological

model simultaneously with those of the structure. However,

rheorogical moders are introduced basicarly for representing the
tangential interaction forces at the beginning of the
interact ion,  and i t  looses i ts  physicar sense when the contact ing
poi :nts d isconnect .  Therefore the expression (3.70) is  usual ly

j enployed during the contact without sliding, and the
displacements are assuned to be zero when sliding occurs or when

'..'the contact points disconnect. The rheological model equations
' are to be solved, if they consist of the seguentially connected

elements, and in this case the total number of degrees of freedom

of the structure increases-

As a shortcoming of rheologica1 models the lack of simple

and reliable methods for obtaining their parameters can be

.,.fgntioned. Usually the parameters are obtained experimentally in

...order to obtain a possibly good approximation of the real
.  .sys- tem' s mot ion -

Applying Lagrange multipliers. The equations of motion
( 3.41 )  ,  (  3.45 )  for  the structure wi th uni lateral  constra ints
( 3 . 6 7 . 1 ) ,  ( 3 . 6 7 . 2 1  a r e  p r e s e n t e d  a s

I v t i j +  C  U + K  U - ? I  ^ o  =  R ( t ) ,
( s . 7 1  )

P T I < d4 N v  _  s o  t

< 3 . 7 2 )

h =  t . a .

A physical  sense of  the Lagrange mul t ip l iers is  as fo l lows:
Xo -  normal  forces,  ensur ing the coincidence of  the contact ing

points of  the structure at  the t ime point  t+a1 ,
- ' \ " -  ror .a l  forces ensur ing the correct ion of  the accelerat ion
. .  value,

\, - impetus of the normal forces, ensuring the correction of the

veloci ty  value,

, -p,  -  tangent ia l  forces ensur ing the correct ion of  the

. . ,1: .  -  impetus of  normal .  forces,  ensur ing the correct ion of  the

. - ' .  , , ' :  ve l oc i t y  va l ue ,

f , ( 1 j )  =

=  { u , , t " ( i i ) ( u - Y " ) + c , i P , ( 1 i ) U ,  
r r  l f , ( i ] ] l > k r f N ( i i )  ( 3 . ? 0 )

L\fN ( 1i )si8n lk 
P" ( ii ) (U-U" )+c,.iP, ( ii )Ul , otherwise

f  M a U + p ] . \ ,  + p ; p r  = O  ,|  * *
|  ( k )  ( k )

{  P a U = - P N ^ U -  ,
l N
|  ( k )  ( k )

I  p ,A  U-  -  p rau -  ,



I f  a l l  t he  cons t ra i n t s  i n  ( 3 .? t ) ,  ( 3 . 72 ,  a re  sa t i s f i ed

egual i t ies,  no s l id ing between the contact  points occurs.

s l id ing takes place at  the contact  pair  i j  r  H€ assume
magnitude of the corresponding tangential force to acquire

cr i t ical  value:

^o=  (P  A - 'P ' ) - ' (  P  A -G-  do )  ,

x u =  ( p  M - r p r ) - r (  p  U - -  q )  ,  k  =  1 , 2
As a rule, the sliding contact points aren't known apriori,

therefore at each time point an iteration governed by the

following algorithn is necessary-

Algor i thn 3-2

3- Obtain the vectors of normal and tangential impetus of

constraint forces employing the relations

as

I f

the

i t s

l p u i l  = 4 ^ u i  ,  k = 1 , 2 ,

In th is case the system (3.72,  is  presented as

( k )

M  a U  +  P * \ ,  *  P i r u  =  O  ,
( k )

P*a U= -  PNaU-  ,

( 3 . 7 3 ) '

(3.7 4 ' , )

, :.- '

r - ' l
1.  Assgne p  =  p  =  I  

rN l

L P.J
2. From the relat ions (3.54) " obtain the Lagrange

nult ipl iers \o ,  \k ,  pr, R = 1 ,2 at the t ine point t+At.

P r a  U =  -  P r a U - ,  R = 1 , 2

where PN denotes the rratr ix  P* wi th the row p*( i j ) ,

corresponding to the contact pair 1j, replaced by the ror,,
P  / i i \ + l z  P  r r i r  .  i-N \ r r r  . . . r . r ) - . rz ,  P,  denotes the matr ix  P,  wi th the row 

*(1J)
deleted ;  1 lk denotes the vector  Ark wi th the elements , r :k( i j )

rand the vectors of the norma]. and tangential forces at the time

point t+at employing the relaLions

- r  + A r  -  t  + A r  -  t + a t  F t  + a t  r + A t
.  - I N  =  ^ o  *  n .  ,  l p  =  P a

4. DeJ.ete al . l  the rows of  the constra int  matr ices P*(1i ) ,

Pr( l i )  corresponding to the negat ive values of  \ . ( i i )  < 0 ,

S * ( i i )  (  0  ,  o r  I * ( 1 i )  (  0  a t  t he  t ime  po in t  t +a t  -

5. If there are some rows deleted at the step 4, go to step

1 ,  e l se  go  t o  s t ep  6 .

.. 6- Mark al]. the rows corresponding to the pairs of the

contact points ij, where the val-ues of tangential impetus of the

constra ints exceeds their  cr i t ical  values,  i -e. ,  where the

- i n e q u a l i t y  
4 l S " ( i i )  l s l S . ( 1 i )  |  i s  s a t i s f i e d .

7- If there are no rows marked during the execution of step

6,  go to the next  t ime point  ,  e lse go to step 8.

8-  Transform the constra int  matr ice" F,  p,  tak ing on account

the constra ints,  narked at  the step 6.  Go to the step 2.

r t  -  t + A t

,  ^ t . a t  
r *  *  ^ a  

, t  - t + a t
J  =  A L  ?  A

" z a

^ t  +At ^t+At

r J, = P, ,

T"l =;,deleted. o".".t"n 
Lf,,l

( 3 -74 ,  i s  p resen ted  as

li:l =' 'h;l =,",  the system

{ k )
M  n T I  +  D T  r  -  n^  . - k  -  v  t

-  ( k )  - ( k )

P a U = - P U -  ,  R = 1 , 2
1a F/q, \

1 ?  t r 2 \ "

(3,5'a ) "

P r e s e n t i n g  t h e  r e l a t i o n s  ( 2 . 5 5 ) ' ,  ( 3 . 5 2 ) - ( 3 . 5 4 )  f o r  t h e
sys tem (3 .71 ) ,  we  ob ta i n  numer i ca l  i n t eg ra t i on  re l a t i ons  as

A ^ U = G - P r x o  ,  ( 2 . S S ) '

w h e r e  A  =  b r M  +  b l c  +  b o K ,  G  =  
\ * a , -  

(  M  q . +  C  q . +  K  q )



The surutrary of the numerical integration relations is

presented in the Appendix 1,  Table A1.7.  The computat ional  ef for t

can be reduced taking account for the local nonlinearities-

Employing complex fricLion laws. When the sliding friction

law besides the Cou].omb friction term includes also other 'terms,

e .g . ,  l i nea r  and  cub i c  [ 113 ] ,  i t  appea rs  r easonab le  t o .  t ake

account for the Coulomb term employing the constraints

(3 .67 -1 ) , ( 3 .67 .2 )  anc t  t o  p resen t  t he  o the r  t e rms  by  a  non l i nea r

continuous function of velocities- rn this case the prob.Iemi is

presented as a nonlinear eguation of motion

m i i  + c U + K U = v ( U ) + R ( t )  , (3  . 76  )

w i t h  t h e  c o n s t r a i n t s  ( 3 . 6 7 . 1 ) , ( 3 . 6 7 . 2 ) ,  w h e r e  V ( U )  p r e s e n t s  ' t h e

contr ibut ion of  cont inuous terms of  the s l id ing f r ic t ion law. i

The system mentioned above is integrated in time emplotS.ng

the Algor i thm 3.2,  supplemented by the formulae of  the Table A1-5

of  the Appendix 1.

iI. STATIONARY DVIAMIC ANAL\€IS OF NONLINEAR ELASTIC
. STRUCTURES

This chapter presents analysis techniques of the resonant

elastic mechanical structures with nonlinear interactions

.vibrating with stationary or slow-varying amplitudes-

., f'or the stationary motion law analysis two alternative

techniques are employed: the solution of the boundary value

problern in time and the weighted residual approach. rn the first

case the moLion law is obtained by the numerical integration of

the equations of motion, and the displacements and velocities at

,the beginning of the period are established in order to coincide

with those at the end of the period. This approach can be

.;enpJ.oyed for the free vibration analysis, too, considering the

vibration period as an auxiliary unknown. In the second case the

notion J.aw is represented as a superposition of some set of

orthogonal- periodic functions, obtaining the weighting factors by

minimizing the residual- The harmonic balance technigues are

shown to be a special case of the weighted residual approach.

For obtaining the motion J-aw analysis in terms of sJ.ow

varying amplitudes the averaging technigues are employed. When

integrating the averaged equations of motion numerically, at each

time station harmonic components are obtained by means of the

Fourier transform.

The above mentioned techniques enabJ-e to obtain both stable

and unstab.l-e motion laws of the structure. The stability of the

motion laws can be approximately evaluated employing transfer

matr ices,  n i l l 's  determinants.  or  approximate stabi l i ty

evaluations based upon the averaged equation analysis and upon

the energy criterion can be carried out.

The original results of this chapter are the algorithms for

obtaining the stationary and slow varying vibration amplit.udes

of  the uni lateral ly  constra ined structures and the I inear ized

equations for the motion law stability analysis of the structures

with the impact  and f r ic t ion interact ion points.

9 1



4.1 DIRECT UETHODS FOR OBTAINING FORCED AND FREE VIBRATION

LAWS. BOUNDARY VAI,UE PROBLEIT{ IN TIME DOMAIN

Consider Lhe natr ix  equat ion of  mot ion of  an elast ic

structure with nonlinear interaction as

M U + C U + K U = Y ( U , U ) + R ( t ) ( 4 i 1  )

The stationary structural response to the periodic

exci tat ion R(t)=R(t+T) can be presented as a v ibraLion wi th the

pe r i od  T  o r  ST  ,  whe re  t he  va l - ues  S=2 ,3 , . , .  co r respond  t o  t he

subharmonic,  and the values s= ;  ,  :  , . . .  -  to the hyperharmonic

vibration. fn certain cases there can be no periodic response

irrespect ive to Lhe per iodic exci tat ion.  In th is chaptgr  r re

consider on1y the sLat ionary mot ion 1aws wi th S=1, i .e. ,  when the

periods of excitation and structural- response coincide. In this

case the displacements and vefoci t ies of  the structure sat is fy

the equation system

the number of  i terat ions.  I f  the structural  d iss ipat ion forces

are s igni f icant ,  the stat ionary mot ion law is obtained af ter

seve ra l  i t e ra t i ons ,  i - e . ,  t he  i t e ra t i on  scheme  (4 .3 )  conve rges .

In the case of  ins igni f icant  st ructural  d iss ipat ion the convergence

rate is very low, and prohibitive numerical errors can be

accumulated during. the large number of integration periods.

.' However, the motion laws obtained by the simple iteration are

always stable.

The Newton-Raphson iteration enables to obtain considerably

higher convergence rates. The Nebrton-Raphson iteration scheme for

of  the equat ion (4.2)  appears as

aU aU
T T T

all aU
o o

,  ( 4 . 4 J

where the der ivat ive matr ix  on the lef t -hand s ide of  (4.4)  is  of

the dinension 2nx2n, md I .* .  denotes the uni ty matr ix .  In order

to determine the derivative matrix it is necessary to obtain a

relation between the variations of the functions 6IJ^, 6U-

r- 'and 
the variations of the unknowns duo, 6Uo . Considering a ...rt

pe r t u rba t i on  6U  o f  t he  mo t i on  l aw  U ( t ) ,  t he  equa t i on  (4 .1  )
appears as

t ' t  ( i i +o i j >  +C  (U+6U)  +K  (U+6U)  = lY (U+oU,U+oU)  +R( t )  ( 4 .5 )

Expanding the nonl inear terms as the Tayfor  ser ies,  we

restr icL ourselves wi th the f i rs t  order inf in i tesimal  ierms.

Taking on account that  the equat ion (4.1)  remains val id for  an

unperturbed mot ion,  too,  we obtain

M d U + C 6 U + K 6 U = 0  , ( 4 . 6 )

fu,.'-,,1 f", "1
lo,.o,J 1,, 'tJ

O U
T T

O U
o

O U
T

O U
o

U " = U o  ,  U " = U o  )

where  U,=U(T) ,  U '=U(T) ,  U"=U(O) ,  %=U(0)  .

ft appears natural to regard the values of Uo, Uo .as

unknowns, and the values Ur, U, as functions obtained from the

egua t i on  (4 .1 ) ,  i n t eg ra t i ng  i t  f r om  the  i n i t i a l  va l ues  Uo ,  % .

The s imple i terat ion for  sol .v ing the equat ion (4.21'  is

appl ied as

( 4 .?>

( 4 . 3  )

where the upper index " i "  denotes an i terat ion number,  and the

values Ui ,Ui  are obtained by means of  the numerical  integrat ion

o f  t he  egua t i on  (4 -1 )  du r i ng  t he  pe r i od  [ 0 ,  T )  f r o rn  t he  i n i t i a l

values U; ,  U;  .  An i terat ion presented by the re lat ions (4.3) ,

is  adequate to the numerical  integrat ion of  the equat ion (4.1)

dur ing the I I I  exci tat ion per iods,  where In coincides ni ' th

w h e r e  f r = f  - 9 ! ,  , = a - 4  . r , t u r t i p J - y i n q ( 4 - 6 ) o n t h e  l e f t :
" a U a U

,Side by the conjugate var iable vectors \  ( t  )  and p ( t  )

O T
r T t  +  I  t T t

t U o = t t



I j^
t;
I J'

Integrat ing

nanipulat ion we

correspondingly and integrat ing i t  in  t ime f rom O unt i l  T,  we

obtain

( M d U + C 6 U + K 6 U ) d t  = 0  j

( 4 . 7  )

) d t  = 0

( 4 -71  by  pa r t s ,  a f t e r  spme

(^ r *u ,  )M6Ur+( \ '  C-x 'M+! 'K)dur  -  ( r .o+r ro  )M6Uo-( roC-x 'M+roK)6Uo +

T T
r " -  f " -+  l t i ' t ' l - i 'C+x r t i ; oud r  -  l ( ; 'M -u 'C+ r , ' f r ) oud t  =o  (4 .8 )

J J
O o

The equation (4.8) ena.bles to estabJ-ish the relation between

the var iat ions of  the t ime-Iaws of  d isplacements 6U(t) ,

veloci t ies OU(t)  ana their  values at  the beginning and the end of

the period 6Uo, ;Uo , 6Ur, iur- rn or6er to express oU, through

the values 6Uo, 6%, we require r . ( t )  and p( t )  to sat is fy the

eguations of motion

Mi-d ' i+ f r ' x=s ,

i n t o  t he i r  exp ress ions  t he  t ime  raws  U i ( t ) ,  U ' ( t )  ob ta i ned  du r i ng

the previous i terat ion.  The system ( t t .10) has more unknowns as

the equat ions,  and the end values can be taken as,  e.9. ,

x r = O  ,  H r = 0 ,  i . = o  ,  i r = - M - t

Tak ing  on  accoun t  ( 4 .8 ) - ( 4 .10 ) ,  we  ob ta i n  t he  re l a t i ons( M o U + C 6 U + K 6 U

each equation of

obtain

( 4 . 1 1  )

( 4 .  1 3  )

( 4 . 1 5 )

AU AU
In a similar way the derivatives ----:- , --: can be obtained.

uuo uuo

Integrating the equations (4.9) with the end values

x r = 0  ,  i r = 0 ,  p r = O  r  p r = l v t - l  ,

we obtain the relat ions

a U - ' : ' r . - r ]' = x : C - x ^ M + F o K
o o

O U
o

v v _ ' = x : C - x : M + r o K  
,o o

O U
o

" t r  /  . T  
' t

,  - r -  = \ ^ ^ - r , ^ ) M  ( 4 . 1 2 )
AU

o

M(rr+ i ry  = g ,  d '^ r -  M i ,+  f r 'pr= r ( 4 .  1 O )

Each  o f  t he  equa t i ons  (4 .9 ) ,  ( 4 . ' 10 )  have  I l  r i gh t - hand  S i c te

vec to r s ,  t he re fo re  t he i r  so l u t i ons  } ' ( t ) ,  g ( t )  a re  ma t r i ces ,  each

column of which is obtained by solving the linear matrix equation

with the corresponding column of the right-hand side matrices as

the r ight-hand s ide vector .  The t ranspose s igns at  the- matr ix  M

are omit ted because of  i ts  symmetry.  The matr ices K,  C here

should be regarded as tirne functions obtained by substituting

The two matr ix  equat ions of  the system (4.9)  are ident ical ,

.  and  t he  end  va lues  (4 -11 )  f o r  X  and  (4 .13 )  f o r  p  a re  o f  t he  equa l

magnitude and have opposite signs. Therefore there is no

necessi ty to integrate each equat ion of  (4.9) .  Moreover,  the end

va lues  o f  ( 4 .11 )  f o r  P  and  (4 .13 )  f o r  ^  a re  ze ro ,  and  t he

'corresponding values po= ; .= 0 and \o= i .= 0 The

system (4.9)  can be t ransformed into the system wi th the

a. , .posi t ive damping term by means of  the subst i tut io. ,  t *= T-t

Summarizing Lhe above consideration, it follows, that in

order to obtain the der ivat ive matr ix  of  (4.4)  the foJ. lowing

,-  Fteps are necessary.

1 )  Numerical  integrat ion dur ing the per iod txe(O,T) of  the

.,.. .rnatrix equation of motion

,  
r  c] , '

M  x  +  t d ( T - t x ) l r x  +  t f r ( r - t * ) J ' x  =  g

with ttre init ial  values Lo=0, \o=-M-., where d(T-t*) .rra fr(f- t*)

ard obtained by substi tut ing into their expressions the t irne laws

.q" (T- t * ) ,  U t (T- t * ) .  As  a  resu l t  the  varues  \ ,  ,  i ,  a re  ob ta ined-

l r '  # r
l Y l g - u P + l l P = u (4 .  e )

obtained from - :thewith the end values at the time point T

eguat ion system

9 4



2) Obtaining the derivative matrix blocks from the relations

the Newton-Raphson iteration the derivatives

necessary. Taking on account Lhe reIations

AU aII
T T

dT aT
are

a = -^:,  -  i :r ,r ,  * = * lr ,  + = ̂ ; fr",  * = -t ; t  ul6)
,Uo r r uUo uUo uUo

T h e c o n v e r g e n c e r a t e o f t h e N e w t o n - R a p h s o n i t e r a t i o n s c h e m e

is very h igh,  i f  the in i t ia l  approximat ion is  good (e '9 ' ,  for , the

linear system one iteration is necessary). rn order to obtain the

a m p l i t u d e - f r e q u e n c y r e l a t i o n o f a v i b r a t i n g s t r u c t u r e ; ' t h e

excitation frequency is varied in snall. steps, and the solution

obtained at the current frequency value is employed as the

initial approxination at the next frequency value'

As the drawback of the Newton-Raphson iteration ,the

comparatively large computational costs for obtaining the

derivative matrix at each iteration should be mentioned. However,

in the case of local nonlinearities the conputational scheme catr

be considerably economized. If the vector of nonlinear forces is

presented as Y(U,U) = |  

O 

-- -  I  ,  at  each numerical  integrat ion

LB, (ur,LI, )J

time point the relations of chaP.3-3 can be employed, where the

matrix blocs A, ,, Ar., A* are independent of Ut,U. and therefore

are constant during aII the integration time' The same values of

the matr ix  b locs are val id for  the eguat ion (4.15),  too,  and the

computat ion of  Al lAr"  ana Ar.A. iA. ,  can be carr ied out  as an

in i t ia l  operat ion.

The computational resource reduction can be obtained'

carrying out comPutations in tine domain' So, after the

ali a1[_

substitution tx=T-t the vectors 
j and -: can be regarded
uU. 6Uz : I

as initial forces. The displacements U as well as the conjugate

variables \ are obtained employing the same blocks of the 'dynamic

compl iance matr ices Sto ,Sto ,S

operat ion.

deternined dur ing an in i t ia l

The case of unknown vibration period. rnvestigaLing.' * the

auto-oscillations and the free structural vibration, the period T

is to be regarded as an unknown. In this case for carrying out

6U(T+6T) = 6Ur+U 6T , oUlT+oT1 = oU +ii oT ,
i

'  
the var iat ional  equat ion s imi lar  to (4-g)  is  obtained as

,'. jl;-;; )M6ur+(\;d-ilN*1,1fr1ou, - (^l*ul )M6uo- 1x'd-ilrir+rlfi1ou" *

-  \ ' C  +  L ' K ) 6 U  d t  -

( 4 . 1 8 )

Subs t i t u t i ng  t he  end  va lues  (4 .11 )  and  (4 .13 ) ,we  ob ta i n  t he
relat ions

dU_ aU_- = U _  .  = U
a T | s T

_*.1,^F;; 
)Mi.i, + rx' d-ilr'r*rl fr >u, ror * J <i' r,r

f , l ' r r .  ' r l  r #-  t \ , / . l  l l l  - , r  u  +  l t  A
J  ) o u d t = o
o

< 4 . 1 7  )

( 4 - 1 9 )

(4 .20 )

" 4-z THE wErGr(rED RESTDUAL AppRoAcH r'oR oBTATNTNG FoRcED
VIBRATTON LAWS

structurar  equat ions wi th the nonr inear terms. consider the

El t r ix  eguat ion of  mot ion of  a '  erast ic  st ructure wi th nonr inear
i n te rac t i on  as  ( 4 .1 )  w i t h  t he  pe r i od i c  exc i t a t i on  R ( t )=pq111y .

-  Theimot ion l -aw u(t )  of  the structure dur ing the v ibrat ion per iod
is represented as a superposition of a set of some T_periodic
time funct.ions as

U ( t )  =  N ( t )  U ^  ,

wrrerelN(t)  -  the rnat f ix  contain ing the t ime funct ions,  and uA-
^ the constant  vector  of  the generar ized anpr i tudes of  the points
'  

o f  t he  s t r uc tu re .  subs t i t u t i ng  (  4 . 20  )  i n t o  (  4 .  r  )  and  we igh t i ng



the residual during the period leads us to the nonlinear equat.ion

in terms of generalized anplitudes Uo :

T T
f . . r

A  U .  =  |  N ' V ( N U . , N U . )  d t  +  |  N ' R ( t )  d t  ,^  J  a '  a .  J
O O

T

where a = | (n'u il + ntc lt + N'x u) ot
J

rn. 
" i lpf" 

i terat ion scheme for the equation (4.21.1 is
presented as

l r  r  
' )

u;*' = A-' | | u'w<uu;,lru;l ot * | u'n<t) dt | (4.22)
L6  8  )

The Newton-Raphson iteration is obtained by presenting the
eguat ion (4-211 in increments as

* " .
A(uo+ouol = l t ' t '  [<*<*, , iw^)* 9I Nou.* {  nou^at*n<t l lot  l -zs>

L  ^ ,  ^ -  a U  o  a U  
. ) _

rro^ t l lzr) forrows the relat ion

(4.21 ' , )

u:" = ui + A,'(R^- A ui + R*) ,
T t T r T

where A,=A- lr'+ | uot- fn'$ | Ndt, R*= lr'*,*|, nu; )ot,'  
J  a U l i  J  a u l i  ' J

and the notation | .".rr. "obtained by substitutingt ,

( 4 . ? 4 )

T
f -

R ^  =  l N . R ( t ) d t ,
o

the values

NU:, ln'ij: ".

If the structural nonlinearities are loca].ized in local
. ( 0 1

z o n e s ,  i . e . ,  i f  f l ( U , U )  =  |  |  ,  t h e  e g u a t i o n  ( 4 . 2 1 1  i s
Ly, (u,,u, )J

presented as

[Li:l tl".]=t rrurw.,*]u^.,*.u^")dt ].flililli]li] : <+.zt >'

After some manipulation the equation (4-24, has
'dinrension 

equal to the length of the nonlinear force vector

the

ili
2

and is Presented as

u::' = ui.+ i;i.<n^.- q.A;lR^,- i,"u;.* i.)

wr,e'" i,,= A..- A..A.lA., , 4.,=i.,-i-r*Jl,n.t

T T T

A f"'7., ,t, ,ri ir rri r - r -
R*,1NlW.(N2U;2 'N=U; . )d t '  R^ .=JN.R( t )d t '  R^==JN;R( t )d t -

o o o

Unilaterally consLrained strucLures. we consider t.he linear

structural equation of motion with the constraints

- ln#,,,l,nu' '

4 , ,

l r v r t i +CU+KU= R( t )  ,
{  ( 4 .2s )
I  P U < d

Subs t i t u t i ng  t he  re l a t i on  (4 .20 )  i n t o  ( 4 .25 )  and  we igh t i ng

< 4 . 2 4 ) '

- D

( 4  ' 2 7  )
- d

t ,  w h e r e  X ( t ) > 0 ,

the residual ,  we obtain

<4.26)

The constra ints of  the system (4.26) must  be sat is f ied at

each time poinL during the vibration period. Introducing the

Lagrange nul t ip l ier  vector  x( t )  > 0 ,  we obtain the fo l lowing

I  
^uo=Ro ,

L t *u  sd

T

A U  + I N ' P ' X d t
A l

o

P N U
A

equation system

I

l
t

f  \ ( t ) ,  a t  each  t ime  po in t
whe re  x ( t )  =  . {  n. t - r o t h e r w i s e .

The physical  sense of  the conjugate var iables ^( t )  is  the

normal force of  constra ints upon a structure-  Simi lar  to the



r e l a t i on  (4 .2O1 ,  t he  t ime - l aw  \ ( t )  i s  app rox ima ted  by

T-per iodic funct ions in the t ime interval  [0,TJ:

a sum of

(4 .28 '

<t. ,zg>

presented as

(  4 . 3 0  )

A lqo r i t hm  4 .1

1 . P " ( t ) = P = c o n s t ,\ : N A

we replace the constraint P N U^ = d at each time point of

the interval  tO,Tl  by the project ions of  th is constra int  upon a

subspace of the same functions, by the superposition of which the

time law X has been approximatedl

.  f  ^ _

B ' = l N ' P ' N d t
J

n '  = i *o-  
iB l r  

) -  
1  (B 'A- 'Ro-D)

x ' = N n '

F o r  e a c h  r o w  P .  o f  t h e  m a t r i x  P ,  J = 1 , 2 r . , ,  ,  o b t a i n

(
I  p " ( t )  fo r  a I I  t ime po in ts  t ,  where  \  ( t )>0  ,

p . - ' =  {  r  -  i '
'  

I  O , o t h e r w i s e
t

I f  ?"* t  coincides wi th Pi  ,  end of  the algor i t tun;

Otherwise 1=i+1 and go to step 2.

With the known values of  \ ( t )  ,  the general ized ampl i tude

vector is determined by the relation

uo= A- ' {R^-  Bt , r  1  (4.31 )

Structures with normal and tangential constraints. We

consider a linear structural equation of motion with the

constra ints

2 -

3 .

4 .

5 .
T T
l ^ -  f ^ -
I t t ' p l ' i o t u  = l t q ' d d t

J A J
o o

Tak ing  accoun t  o f  ( 4 -291 , system

{  

ou" - '

( 4 . 2 7 1  i s

t

the

Bt rr

B U

A

T T
r ^ -  r ^ -

whe re  B  =  |  N 'P  N  d t  D  =  |  N 'd  d t
J J
o o

Expressing A f rom the system (4.30),  we obtain

I  =  (BA- 'B '  ) - *  (BA-1R^ -D )

The t ime. law x( t )  dur ing the per iod is  approximated by the
>#l

re l 'at ion (4.281,  and at  some t ime points i t  nay occur that  \ (0 ,

causing the negat ive normal .  interact ion forces.  In order to

exc. Iude these negat ive values,  the constra ints shouldn' t  be

considered at the negative values of \ . Therefore we regard the

rows of  the constra int  matr ix  as the t ime funct ions P = P(t) ,  and

prescribe them the zero values at the time points when the

corresponding elements of  the vector  x are obtained negat ive

from the re lat ion (4.281

In general ,  the contact  forces are obtained employing.  " the

fol lowing algor i thn.

( 4 . s 2 )

where the pairs of the corresponding rows of the matrices P*, P,

impose the normal and tangential constraints upon the

displacements of the structure points. The tangential constraint

is to be regarded only when the corresponding normal- constraint

i s  ac t i ve , i . e . ,  i f  i t  i s  sa t i s f i ed  as  an  equa l i t y .  Mo reove r ,  t he

tnaghi tude of  a tangent ia l  force ;  can, t  exceed i ts  cr i t ical
J

value p j 
. k, ^j , determined by the magnitude of the

corresponding normal force ^, and the Coulomb friction

coe f f i c i en t  k ,  -  The  equa t i on  sys tem s im i l a r  t o  ( 4 .22 )  appea rs  as

I u i i *CU+KU= R( t )  ,
I
I  r *u .d  ,
I

I  I ,u=o ,

1 0 0

1 0 1



(  T ?.-^_
I  A U  +  |  N ' P ' ^  d t +  |  N ' P ' r ,  d t  = R o
l o J N J r
l o o
1  pnu  =d
l " a
l ^ .

I  P N U ^ = g
L T

where the normal force is determined as

f  I ( t ) ,  a t  e a c h  t i m e  p o i n t  t ,  w h e r e  \ ( t ) > 0 ,
r ( t )  =  {  ^

L r r o c n e r w r s e ,

and the tangential force is determined as

In general, the values of the contact forces are obtained by

the following algorithm.

a]-qori thm 4-2

1 -  P : ( t )  =  P N =  c o n s t  ,  P ; ( t )  =  P , =  c o n s t  ,  i  =  O -

T T
f  F - - :  -  

f  x - = ,  -

z .  R  =  l  N ' P ' N  d t ,  B '  =  l  N ' P ' N  d t ,
J J
o o

3. ;r = <i a- 'E' ,- '  1it . t- 'o^-i) ,

e - r t = f r 4 '  ,  p t= f r t t  ,

5 -  F o r  e a c h  r o w  P * , o f  t h e  m a t r i x  P * ,  j = ' 1 , ? r . . .  ,  o b t a i n

ni.+l f  r i r<t l  at al l  t iure points t ,  where x (t) > 0 ,
Y = 1- N i  

|  ^
t 0 , otherrrise
t

6.  r f  Pi* l  coincides wi th Pi  ,  So to step 7.

-. 
otherwise assume 1=1+1 and go to step 2.

7. Transform all the rows of the matrices P: , ?; as

fol lows:

i t "  r t \  -  k p i  { t \ +  P i  ( t }  -  i i "  r * '  -  ^- N j  - ' r - r j \ - /  - N j \ " '  '  f ;  
- ( t )  =  U  '  d t  t i m e

po in t s  t  ,  whe re  l a . ( t ) l <  k r  x  ( t )  -  A t  t he  o the r  t ime

points don't change the rows P,1., , Pi,

8-  I f  there exists at  least  one pair  of  rows P:,  Pl ,

transformed at step 7 , increment 1=i+1 and go to step 2.

Otherwise - end of the algorithrn-

I L  e e \

I  a ( t ) ,  a t  e a c h  t i m e  p o i n t  t ,  w h e r e  l r , ( t ) l s \ \ ( t ) ,
P ( t )  =  

I  X  ^ f t l s j q r  r r ( t ) ,  o t h e r w i s e  .
L ' - r ' - \ " ' - :

The matrice" i** i, are obtained from the matrices P*, P, as

follows. The matrix P" is the matrix P, , each j-th row P*, of

wh i ch  i s  r ep laced  by  t he  row  (PN .+k rP r . s j €n  i r )  a t  t he  t ime

points, when sliding in the j-th contact pair occurs. The matrix

P, is the matrix P, , each j-th row of which is replaced by zero

at  the t ine points,  when s l id ing in the j - th contact  pair  occurs.

The t ime laws \ ( t ) ,  1r( t )  are approximated by

\ = N n  ,  F = N M

Assuming the notations

=l i , ,o t  - fP , .o t  - [ l l l  - l . f r . l  - [n
p= l  "  ^  l , l= l  "  ^  l ,  u= l  l ,  n= l  ; .  |  ,  n= l

L0 r" l  L0 r, l  l*J l*J L"
t he  sys tem (4 .33 )  i s  p resen ted  as

(  4 . 3 4  )

, ' = [  
: ] ,

Iou^
I
t

* | r l 'F f r rd t=R
J A

P N U ^ = P
( 4 . 3 5 )



Analysis in frequency domain enploying the harmonic balance

technigues is rray be considered as a special case of the weighted

residual approach. The harmonic functions are employed as

weight ins funct ions N(t ) ,  f r ( t )  . .

N ( t )=  t  I  I cos . i  I s i n - t  l cos2o t  I s i n2 - t  . , .  I  ,

N( t )= t  I  Icos. t  Is lnot  Icoszot  Is i l t2ot  , . .  I  ,

where I - unity matrix of the dimension equal to the length, of

the vector U , I - unity matrix of the dimension equal to the

number of constraints, i.e., to the number of rows of the matrix

-  , ^ 2 n
P, and T== .  The general ized anpl i tude vector  consisLs of  the

sine and cosine Four ier  ampl i tudes U =f l f  TTI  
' IT1 

TTz TTz l r-  a  L U - ' U " ' U " ' U " ' U " " . ' J  
,  t h e

harmonic balance method relat.ions being presented in the Appendix

3 . 1 .

. Finite element approach in time domain is obtained by

div id ing the interval  tO,Tl  into [ l  f in i te e lements each of  the

T
Iength 

fr 9Jhen employing the second order elements with three

nod.es, the generalized amplitude vector on the i-th element is

presented as

4 .3TRANSIENIANDSTAT IoNARYANAI ,YS ISoFNoNL INEA} IV IBRAT IoN

WITH SLOITT VARYING AUPLITUDES

i'- 
Emplolzing the time-averaging techniques. Consider the matrix

equation of motion of an elastic structure with the nonlinear

inberact ion as (4.1)  wi th the per iodic exci tat ion R(t)=R(taf l -  97"

present the displacements and forces as truncated Fourier series

as

P

U(t) = )-  Ulcostr<-1 )ot + Uksln(k- l )- t  ,
L - c
k = 1

(  4 . 3 6  )

p

T( t )  =  ) -  w i cos (k - l  ) . t  +  Wks in (k -1  )o t  ,
/ c

k =  1

where according to the definition Ut= R:= g:= 0 , and - =?A
I

Enrploying the averaging in time techniques t98l ' we consider the

amplitudes Ui, Ui, I{=T;F as time functions- Moreover' }te require

that the expressions of the velocities should be presented in the

same form as in the case of the stationary amplitudes:

U(t )  =  f  -u l ( l< - l  ) .  s1n(k -1  ) . t  +  uk(k -1) -  cos(k -1)o t  ,
L - c
k = 1

' .k "krn real i ty  U* ,  U* are t ime funct ions,  therefore i t  is

necessary to take account upon this circumstance when

di f ferent iat ing in t ime. The form of  the re lat ion (4.37) assumes

sat isfy ing the re lat ions

U k c o s ( k - l ) o t  + U k s i : n ( i < - 1  ) o t  =  0  , I <  =  1 ' p  -  ( 4 . 3 8 )

'  
, '  .  D i f f e ren t i a t i ng  (4 .37 )  i n  t ime ,  we  ob ta i n

,. .1 t ,-
i i t t l  =  )  |  

-u l (k-1 ' )o2cos(k-1 )ot  -  u l tx- t  )zozsin(k-1 )ot  -
L - L
k = 1

-Ui <X-r )o sin(I<-1 )ot +

P' r  
R( t )  =  f  n lcos<f -1  )o t  +  Rks ln (k -1  ) . t  ,

L - e
k =  t

( 4 . 3 7 )

u=NU:= [ r*" ,  rN, ,  rN,r [ | , ._ ' ]  ,

(  ( ( - 1  )
where *o= 

, 
,

During each iteration the rnatrices for the whole time

interval  [O,TJ are obtained according to the global  f in i te

element matrix assembling rules, imposing the periodic motion

condi t ion . .  U.=Ur-*r .  The global  general ized arnpl i tude vectoi ' is

Nr= - ( ( -1  ) ( {+1  )  ,  t ,=  
?  

,  (=  !

u ^  =  
[  

u r , u . , u " , . . , , u r - ] t ul <x*r )o cos (1{-1 ).t ]

1 0 4
1 0 5

( 4 . 3 9  )



Subs t i t u t i nq  ( a .36 ) - ( 4 .39 )  i n t o  ( 4 .1 ) ,  and  ave rag ing  du r i ng

the time interval t0, Tl, after some manipulation we obtain, the

equatlon of motlon Ln terms of slow varyLng amplLtudes as

U

2oM 0
0 2oM

2(p-1 )oM 0
0  2 (p -1 )oM

+C K-.tM
-K.l-"M -.C

( 4 .  4 0  )

- (p-1 ) .C K* '1p-1 ; 'M
-K+oz (p-1 ; 'M -1p-l 1-c

Irlatrices in the equation (4.40) are b1ock-diagonal-- Iilith no

non1inearities present (Y=0) , the equation (4.40) decomposes

into k independent equations, each of which enables to obtain the

corresponding Fourier anplitudes. ff the nonlinearities are

present,  i t  is  necessary to solve the equat ion (4.40) of  the

dimension 2(p- l  )n x 2(p-1 )

If the nonlinear interaction forces are concentrated in the

Iocalized points or zones of the structure, the vectors and

matrices can be represented in the block form, where blolks

correspond to the linear and nonlinear parts of the structure.

The matrix inverse and other block operations corresponding to

the linear part of the structure are carried out during an

initial operation. As a result, during each iteration 
-the

nonl inear matr ix  equat ion of  d imension 2(p-1 )n2x 2(p-1;n,  is  to

be considered, where llr- the number of the nonlinear degrees of

freedom.

If the sirnple iteration scheme for solving the nonfinilar

equation at each numerical integration step doesn't convergie. the

Newton-Raphson i terat ion is  necessary.  In th is case at  each

AY
the derivative matrix 

a 
is to be determined

o u
A

employing the relations of the Appendix 3-2-

In the case of  l l l -condl , t ioned st i f fnesg matr lx  ,1.e. ,  Lf

rigid body motions of the structure are possible, the system

(4.40) can' t  be solved,  because at  the very f i rs t  i terat ion i t  is

necessary to invert the matrix K As a rescue from this

situation the equivalent transfornation of the matrix K and of

the nonlinear term W can be acconplished by presenting the left

upper b lock of  the equat ion (4.40) as

0 = - K

u't
ri? |
r c  I
U I

" l
. l' l
rr" I
" - l

q)

Ro'l

-R: I
! l

p 1  |

. ' l
: l

-po I

;:l

1l,"

1lIt

\IJ'

:

U'P

l{lP

tPr

U - |

I I ' I
- l

:l-
rrP I

c l

lrP I

-K

iteration

w h e r e K = K + m a n l k r j l l  ,
r r ,  I  r P
f [ . f  v  r

( 4 . 4 0 ) '

with the

nonsingular nratrix K .

The dynanics of rigid-body displacements of a structure can

be taken into account by present ing the equat ion (4.40) '  as

( 4 . 4 0 ) "

Lhat coincides wi th the in i t ia l  eguat ion (4.1) .  However,  in th is

case the inrplicit unconditionally stable numerical integration

scheme must be adopted, because otherwise the presence of the

equat ion (4.40)"  prohib i ts  the t ime integrat ion steps exceeding

, , the shortest  natural  v ibrat ion per iod of  the l inear part  of  the

F t ruc tu re  ( see  ChaP .2 ) .

ror obtaining stationary vibration laws the left-hand side

.  of  the equat ion (4.40) is  assumed to be zero- The der ivat ive

matrix necessary for applying the Newton-Raphson iteration to the

obtained nonlinear algebraic equation is presented by means of

ttre same relations of the Appendix 3-2, as in the case of
{ '
. averaged. equations of motion-

The case of unilaterally constrained structures. The dynamic

- , ,pgduct ion of  an elast ic  st ructure wi th uni lateral  constra ints is

. carried out by truncating the dyna-nric contributions of the higher

modes of  the l inear part  of  the structure (see chap- l ) .  In

r {+ {+n l  ,

fi= 1ll-+ ma:<

u4*c I t= -K i t+ {+n i  ,

1 0 7



general, when the norma1. and tangential constraints are present,

the Lagrange multiplier values X* r \, are obtained from the

re l aL ion  (1 -50 ) ,  Chap .1 -  I n  t h i s  case  t he  equ i va len t  non l i nea r

force

w ( 2 , )  =  - o : i  (  r  s u i ' l - ' t  i  a l z L + l s k R  -  d o )

av
6T =  - " :p  (p  skpr ) - 'p  a ,

a .

at each t ine point-  Further the re lat ion (4-421
ay

place of - , that in its turn is employed when
AU

(see Appendix 3-21 -

' t

( 4 . 4 1  )

is to be regarded.

r f  the t ime law zr( t )  is  known, the value [ i (2.  )  is  to be

determined according to the Algor i thn 1. ' t  of  Chap.1.  As a resuJ. t ,
- =

the matrices P, P acquire the predetermined values at each time

point. i.e., they can be regarded as time functions and employed

in order to determine the derivative

( 4 . 4 ? )

is employed

obtaining

in
aw

dU

4.4 STABILITY ANALYSIS OF THE VIBRATION LAWS

Linearization of equations of motion at the solution point.

The stationary motion laws obtained by integrating the eguations

of motion numerically until the end of transient vibrations, are

always stabJ'e. However, among the motion laws obtained by soJ.ving

aboundary value problem in t ime domain (Chap-4.1)  and by

employing the weighted residual  approach (Chap.4.2)  may appgar

unstable ones-

The stabi l i ty  of  stat ionary mot ion laws of  nonl inear

mechanical systems is usual.J.y investigated considering lhe

equat ions of  rnot ion l inear ized at  the solut ion point .  Assume,

that  the equat ion of  rnot ion is  presented as (4.1 )  and a

stat . ionary solut ion U*<t l  = t l " t ( t+f)  is  obtained,  the per iod T of

which coincides wi th the per io 'd of  the exci t ing force R(t)=R(t+T).

In th is case the l inear ized equat ion for  invest igat ing the

stabi l i ty  of  the solut ion U*( t )  i "  obtained as

l + c< t l x+ i< t ) x=0 ,  ( 4 .43 )

-  - r l  -  - - - l
w h e r e  i i < t > = K - + l -  a n d  c t t l = c - : 9 u l *  a r e  t h e

d U  l u - < t r  d U  l u  < t r

t ime funct ions.

consider the eguation of motion with unilateral constraints

t v t i i + C U + K U = R ( t )  ,

and i f  the constra ints (4.44b) are sat is f ied
as  equa l i t y  ( i . e . ,  i f  t hey  a re  ac t i ve )
there are considered the auxiliary constraints

( k )

P U = 0 , k = l ' n  ( 4 . 4 4 c )

< 4 . 4 4 )

Consider ing U*( t )  
" r  

a T-per iodic solut ion of  th is equat ion,

the linearized equation for investigating the stabiJ-ity of the

not ion raw Ux(t)  appears as

M X + C X + K X = 0 (4 .45a )

and at the time points when the equality

p  r i k r + r  - . r
r  v  \  v r  -  * o  t

is satisfied, consider the constraints

D T T < d
r v - s o t

P X = 0  ,
( k )

P X = O , k = f f i

<4.44a)
(4 .44b)

(4 .45b )

(4 .45c  )

( 4 . 4 5 )

The numerical  integrat ion of  the system (4.45) is  carr ied

out by employing the approaches presented in Chap. 3.4 -  3.6 wi th

the only difference that the activity or nonactivity of the

constra ints is  predetermined at  each t ime point  by subst i tut ion

o f  t he  so lu t i on  U* ( t )  i n t o  ( 4 .44b ) .  The re fo re  t he  sys tem (4 .45 )

can be regarded as the system wi th per iodic coef f ic ients.

Applying the dynamic reduction techniques of the

uni1aterally constrained structures by truncating the higher mode

dynamic contr ibut ions of  the l inear part ,  we obtain the re lat ion

( see  chap .1  )

\ 1 7  
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Presenting the contact forces in the form of the nonlinear

func t ion  Y(z^ ,L r ;= -arPrx  ,  a t  a r r  the  t ine  po in ts  where  x>O the

Eollowing relations can be obtained

o l
T ^ T . - t ^

_ = _ a . f  A  . Y 4 . ,

o l
. T n T  ^ . - t o  r - 1 r  ^  l /  A 4 - \_ =  _  a  _ t  A  . D A  r

- ' -  
" t '^  _ _t t

t

At the rernain ing t i rne points ( i .e. ,  where \  < 0 )  ,  the

d\[ ag
relat i .ons

ozt  dZt

are employed in order to obtain the tine-dependent- stiffness and

damp ing  ma t r i ces  o f  t he  sys tem (4 .43 ) .

The t ransfer  matr ices Q ^*r .  are obtained by integrat ing

numer i ca l l y  t he  l i nea r i zed  sys tem (  4 .43  )  o r  (  4 . 45  )  w i t h

T-per iodic coef f ic ients dur ing the t ime interval  [0,  T]  wi th the

fol lowing in i t ia l  values at  the t ime point  t=0 :

f o r  i < n , x . , ( 0 ) = 1  ,  x i ( 0 ) = 0 ,  i = T ; n , 1 t i ,

\  (O)=0,  i=T;n '

f o r  j  >  n ,  i  - . < O l = f  ,  x , ( O ) = o ,  1 = T ; n ,  i  *  j ,

xr (0)=0'  j -=fn

The j - th coJ.umn of  the t ransfer  matr ix  presents the solut ion

fxl
l - i . |  . f  t h e  s y s t e m  ( 4 . 4 3 )  o r  ( 4 . 4 5 )  a t  t h e  t i m e  p o i n t  t = l

The  cha rac te r i s t i c  equa t i on  o f  t he  sys tem (4 .43 )  o r  ( 4 .45 )

of  d imension 2nx2n is

det  Ia - " r ]  
=o ( 4 . 4 7  )

After  obtain ing the roots of  the character is t ic  equat ion

(4 .471 ,  t he  s tab i l i t y  o r  i ns tab i l i t y  o f  t he  moL ion  1aw  o f  t he

in i t ia l  nonl inear system is determined employing the wel l - -known

Liapunov's theorems :

1.  I f  the absolute values of  aI I  the roots p of  the

cha rac te r i s t i c  equa t i on  (4 -47 )  a re  l ess  t han  un i t y ,  t he  mo t i on

law is stable i r respect ively of  the higher order inf in i tesimal

terms -

2.  I f  among the roots of  the character is t ic  eguat ion (4.47)

there is one exceeding unity by its a-bsolute value, the motion

law is unstable irrespectively of the higher order infinitesimal

terms.

I f  among the roots of  the character is t ic  equat ion (4 '47)

there are some equal to unity, the necessarY condition for

stability is that they should be simple or have sinple elementary

d i v i de rs .

The Hi I I 's  general ized determinant techniques Present the

solution of the linearized equation as

X(t)  = eht  f  x l "o"(k-1 )ot  + Xksin(k-1 )ot
L,
k = 1

The t ime funct ions f r*( t ) ,  d*( t )  t . .  obtained bv subsLi tut ing

(4 -48 )  i n t o  ( 4 .43 ) .  Equa t i ng  t he  coe f f i c i en t s  a t  t he  s i ne  and

cosine functions correspondingly, the equation for determining

the character is t ic  indices is  obtained as [82]

zn  
oe t [ v< .1  - r r r ] =o ,

w h e r e o = ^  .

the plesence of  at  least  one posi t ive character is t ic  index

h)O indicates the instabi l i ty  of  the solut ion of  the or ig inal

equat ion.  The gi l l 's  determinant method is preferable for

invest igat ing the stabi f i ty  of  the systems wi th parametr ic

exci tat ion,  because the equat ion

oet  Iv<- t ]=o , (4 .  50  )

enables to obtain the borders of the stability region for the

I-per iodic solut ion.  Having in mind that  the values of  the

elements of the matrix Y depend upon the parameters of the

system, the parameter values are obtained by solv ing the equat ion

(4 .50 )  f o r  t he  d i f f e ren t  va l ues  o f  a  .  Fo r  i nves t i ga t i ng  t he

stabi l i ty  of  stat ionary mot ion laws of  a nonl inear system, the

HiI I 's  determinant technigues don' t  possess any advantages in

(4 .  48  )

<4 .4e )



comparison with the transfer matrix approach, because the

dimension of  the eguat ion (4-49,  isn ' t  lower than the dimension

o f  t he  equa t i on  (4 -47 r .

fnvestigation of stability by employing averaged eguations.

Having obtained the stationary notion J-aws by the weighted

residual approach, it appears reasonable to enploy the stability

investigation nethods, tal<ing account for the assurnptions

employed by obtaining the notion laws.

Assume, that. the smal.l perturbations don't change the

presentation form of the solution in the subspace of b?€ic

functions, but only influents slightly the val-ues of the

generalized anplitudes- Enploying the harmonic functions as a

basis and presenting ttre nonlinear term W(U,U) as weJ.J. as the

motion law in the form of truncated Fourier series, tHe

time-averaging approach produces the followinq differential

equat ion (4.40) in terms of  sIow vary ing ampl i tudes

B U  = A U  + W  + F-  - a  - -  - a  
a  

- - a ( 4 . 4 0 ) '

Denot ing the stat ionary soJ.ut io. t  
" "  

t { { t )= U*= COnSt,  the

Iinearized equation for investigating the stability of this

solution is obtained as

tnotion is ensured. However. the stability concept here has its

approxinate meaning, because the solution i{ itself is

approxinate-
- ' . .Simpl i f ied stabi l i ty  test  enploying energy cr i ter ion.  The

noriLinear system stationary notion law investigation methods
.piesented above reguire a considerable conputational effort for

obtaining the transfer matrices as well as for solving an

eigenproblem of large dinension, or for obtaining the

coefficients of a linearized eguation and determinant values when

employing the Routh-Hurwitz criterion- If the number of degrees

of freedon is large, the time-consuning comPutations at the

stability investigation stage may appear as prohibitive- However,

ttre approximate sta-bility investigation can be carried out by

.evaluating the change of the amounts of work done by external and

internal forces during one oscillation period when the

generalized amplitudes or the initial conditions are perturbed.

Such an approach was employed in [91 ] -

The difference between the amounts of work done by the

external- and internal forces during one vibration period egua1S

where A - the work of

external forces.

A = A r  - A .  ,  ( 4 . 5 2 )

internal forces, A - the work of

rn the case of  the stat ionary mot ion law U*<t l ,  obviously,

A=0 , because the balance between the anounts of work done by the

external and internal forces is the basic feature of the dynamic

equilibriun of the mechanical systen. A snall perturbation of the

mot ion 1aw leads to an increase of  the internal  force work ( i .e. ,

the increase of  d iss ipat ion),  and A)0 is  obtained.

Assume that the stationary motion law defined by the values

U(0),  U(O) at  the begin of  each exci tat ion per iod has been

6btained by solving the boundary value problem in time domain.

Integrating the equations of motion in time, the motion law

sat isfy ing the condi t ion U(T)=!(Q) ,  U(t )=U(O) i t  obtained- The

t ime law of  the U(t)  being known, l te consider the nonl inear

f unc t i on  V (U ( t ) ,U ( t )  )  as  t he  t ime  f unc t i on  l l l ( t )  ,  and  t he

equat ion (4.1)  is  considered as a l inear one wi th the per iodic

exci tat ion R(t)+W(t) .  The di f ference between the amounts of  work

X ( 4 . 5 1  )

alli
The derivative o in (4.51 ) is defined using the relat lons

uuo
of the Appendix 3-2.  The invers ion of  the matr ix  B isn ' t  a

time-consuming operation because of its bJ.ock-diagonal. form, and

in the case of a diagonal mass matrix it is trivial-. The

coe f f i c i en t s  o f  t he  equa t i on  (4 .51  )  a re  cons tan t ,  and  . f o r

the stability investigation it is enough to evaluate the signs of

the roots of the characteristic equation employing the

Routh-Hurwi tz cr i ter ion.

It appears worth to mention, that in the case of the

stationary motion law obtained by integrating the time-averaged

equat ion (4.40) '  in  the "s low" t ine f rom some in i t ia l  values

Uo(O) unt i l  the stat ionary value q ,  the stabi l i ty  of  such

. l aw
x  =B- ' lA+  ^
"L6un

)
I
I
I

* l
I^ )l.

I
I

I

I
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( 4 -521  i s  p resen ted  as

u(0 )

u (0 )

c U + K u - F ( t ) - R ( t ) l ( 4 . S )

rn order to evaluate A for the perturbed initial values

U(0 ) ,  U (0 ) ,  i t  i s  necessa ry  t o  i n t eg ra te  t he  equa t i on  (4 .1 )  f r om

these in i t ia l  values dur ing the v ibrat ion per iod [0,T] ,  and to

subs t i t u t e  t he  ob ta i ned  no t i on  l aw  U ( t )  i n t o  t he  re l a t i on  (4 .53 ) .

However, it remains unclear what kind of perturbation should' be

made upon the in i t ia l  values.  E-g-,  we can choose the

perturbatior, '

symmetry of the matrices K and M . It is employed for evaluating

the difference between the amounts of work done by external and

internal forces after a smalJ- perturbation of the amplitudes of

single or several harmonic components as

=  ( 1  +  e r )

0 l  =  ( t  n ' , )

- amplitudes of a

( 4 . s 6 )

A=0, and U:' U: - amptitudes of the perturbed motion law.

T
r  . -  (  , '
I  U ' ( t ) l  M U +
J T
o

I T K

trkU .

U*

,  , , k  , , k
w n e r e  u c ,  u . stat ionary mot ion law, ensur ing

( 4 . s 4 )

I f  the value A )  0 is  obtained,  i t  doesn' t  guarantee the

stability of the motion law. However, the value A ) 0 obtained at

several  d i f ferent  perturbat ions,  a l lows to expect  the stabi l i ty .

The value A(0, obtained at zrny perturbation, shows the

instabi l i ty  of  the mot ion law.

Assrne, that the stationary motion J.aw has been obtained in

terms of  general ized ampt i tudes Ui ,  Ui  ,  k  = T,P subst i tut ing
p

the t ime raws U(t)  = t  Ulcos(k-1 ) . t  + Uksin(k-1 ) . t  into the
(:. "

expression V(U, U) and expanding the obtained t ime law as a

truncated Four ier  ser ies,  we obtain the ampl i tudes l l iu ,  Vk.
.  . ,k , , ,k -)< -k

Cons ide r i ng  \ { ^ ,  l g ^ ,  R^ ,  R^  as  a  po l yha rmon i c  exc i t a t i on ,

subs t i t u t i ng  i t  i n t o  t he  equa t i on  (4 -53 )  and  ob ta i n i ng  t he

integral  value,  we express the di f ference between the amounts of

work as

- (k-1 ) ' {u ! '1  nu+ t lu  1 + u! ' { * :  )  ) ]  (4 .ss )

The relat ion (4.55) is  obtained,  taking account for  the

-  , , k r ^  , , k  , , k r ^  , , k  rA  =  )  |  " ( k - t ) ' .  ( U l ' C  U ^  +  U ^ ' C  U " )  -

p k ,
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5. MOTION CONTROL OF ELASTIC STRUCTURES

There are two alternative approaches for obtaining

programed control laws. The first one is based upon a targlt

funct ion minimizat ion consider ing the exci tat ion forces 9:
parameters and solving an optimal control problem with the fixe{

or varying tine. The other approach employs a presentation of

structural dynamic equations in modal coordinates with truncated

dynarnic contributions of higher modes. The number of coordinates

with reta ined dynamic contr ibut ions is  selected in order,  to

obtain a unigue solution of t.he problem.

A linear cJ-osed-loop controI with Lhe displacement and

velocity feedback is obtained by eurploying the inverse dynamic

problem approach,  the prescr ibed mot ion of  a structure 'being

expressed as a superposi t ion of  exponent funct ions- In most cases

a solut ion isn ' t  unique,  and approximat ion errors are mini i l ized

employing the general ized matr ix  inverse or  represent ing a

probl-em in a su.bspace of modal coordinates.

A strucLura.l- motion control synthesis employing logiial.

el-ements in a feedback circuit is carried out by resolving the

dynarnic equations into modal components and employing a separate

feedback for each of them.

The exci tat ion laws ensur ing the prescr ibed resonant

vibration patterns of structural- nodes are obtained by solving

the inverse dynamic or  opt imizat ion problems.

The or ig inal  resul ts presented in th is chapter  consist  of

the development of programmed and closed-loop control syntbesis

l-echniques based upon the inverse dynamic problem and dynamic

contr ibut ion t runcat ion approach.  The method is appl ied to the

mot ion contro l  synthesis of  st ructures wi th the logical  feedback

c i r c u i t .

5.i FIXED AND VARYING TIME OPTTMAL COIT|ROL

Gradients of  target  funct ion.  We consider the eguat ions of

mot ion of  an elast ic  st ructure as

whe re  M ,  C ,  K  
" ^ -  

s t r uc tu ra l  ma t r i ces  o f  an  e l as t i c  s t r uc tu re ,

U.*r-  d isplacement vector ,  B."r -  nonl inear funct ion,  pr* ,

parameter vector, R **- constant transformation matrix of an

input  vecto.  f_" ,  into a nodal  force vector .  I t  is  necessary to

obtain an input law f and the values of paraneters p minimizing

Lhe functional

7 - e ( U , , U , ) + U , U , p ) d t ,  ( 5 . 2 )

def ined upon the t ime interval  [0,T]-  The values at  the end of

the interva1 are denoted through Ur, % . If the control time T

i s  p resc r i bed ,  t he  re l a t i ons  (5 .1 ) ,  ( 5 . 2 )  r ep resen t  a  f i xed  t i ne

opt imal  contro l  problem, otherwise a vary ing t ime opt imal  contro l

.Broblem is obtained. The maximum speed problem is obtained by

solv ing a vary ing t ime problem and assuming v = 1.

The equat ion (5.1)  may represent a programmed controJ.  sysLen

a-s weJ-J. as a cJ.osed-Ioop one- In the J-ast case a proper choice of

parameters p enables to opt imize a feedback c i rcui t  according to

the cr i ter ia def ined by the funct ional .  f , .

In order to obtain the opt imal i t .y  condi t ion we employ the

Pon t r i ag i n r s  max imum p r i nc i p l e  [ 130 , ' 115 ] .  Assume  the  i n i t i a l

approxirnat ions of  the values of  f ( t ) ,  p,  T and the corresponding

mo t i on  l aws  U ( t ) ,  U ( t )  known .  Assume  6 f ,  6p ,  6T  be ing

inf in i tesimal  var iat ions of  the vectors of  input  laws,  parameters

6.nd the controJ.  t ime correspondingly causing the var iat ions h( t ) ,

h( t )  of  the mot ion l -aw. Subst i tut ing the values f+6f ,  p+6p, T+6T,

-U+h ,  U+h  i n t o  t he  re l a t i on  (5 .2 ) ,  we  exp ress  a  va r i a t i on  o f  t he

funct ional  as

6 U  -  p v  6 U r * o u  o U  - y 1 U r , % , p ) o T
T T

(v .h+vuh+vod ' )d t  (5 .3 )

.  Except the var iat ions of  the independent quant i t ies 5f ,  6p,

6T  t he  re l a t i on  (5 .3 )  con ta i ns  va r i a t i ons  h ,  h  o f  t he  mo t i on  l - aw

that  can be expressed through 6t ,  6p,  6T employing the equat ion

(5 .1 ) .  I n  o rde r  t o  ob ta i n  t h i s  r e l a t i on  t he  con juga te  vec to r s

x ( t ) ,  s ( t )  a r e  i n t r o d u c e d .  M u l t i p l y i n g  L h e  e q u a t i o n  ( 5 - i )  b y  X r

T
f
l v (
I

o

r
, I

f l

J
o

t v t i i + C U + K U = i l l  ( U ,  U ,  p  ) + R f  ,  ( 5 . 1 )



and by ut f.o* Lhe left-hand side and integrating during the time

in te r va l  [ 0 ,T ]  we  ob ta i n
(x' +;; ) ( cu,+KU,-1{l (u,, u,, p ) -Rf, ) 6T + (i;M-xi d,-r,ifr, lqar

- a  f  " *
+  (x r+p '  )M6Ur-  ( \ '  M-xrCr -F ;K,  )6U,  +  

|  
( t  '  M-x '  c+r '  K)hd t  -

;
. .T T'  r . r -  - -  . , *  f r _ r , . . . r . r d W  . ^  ,-  l ( g - M - r , ' c + p ' K ) h o u - l \ ^  r r r  / \ 8 , . ' ,  - y  .  R  o f  ) d t =  0  ( 5 . 7 )

I
J J E
O O

The relat ion (5.7)  doesn' t  contain the values of  any

quant i t ies at  the t ime point  t=0,  because the in i t ia l  values are

assu.ured to be prescr ibed and,  consequent lv,  h(O)=h(0)=ouo=6%=0-

compar ing the re lat ions (5.3)  and (5.7) ,  we require the fo lJ-owing

conjugate equat ions to be sat is f ied :

f  * i - c ' i + K ' x = i , '  ,  ( S . B )
t

I  . .  "  1 r '  r r  r
I  M  u  -  C ' i ,  +  K ' P  =  v L  ,

their end values at the time point t=T being obtained from the

algebraic eguation sYstem

T T T
r  -  ' ,  -  f  f  -
l ( x ' M U  +  r ' C U  +  \ ' K U ) d r  =  I  x ' g ( u , u , p ) d t  +  I  x ' R  f  d t
J '  J  J
o o o

T T T
I  ' -  . .  f  ' -  '  r  ' -

l ( u - M U  +  i , - c u  +  r , ' K U ) d t  =  |  p ' g ( u , u , p ) d t  +  |  i , ' R  f  d t
J '  J  '  J
o o o

( s . 4 )

equation

( 5 . 5 )

( 5 . 5 ) ,

through

r r (  6 \

Replacing the right- and left-hand sides of Lhe

5 -4 )  by  t he i r  f i r s t  va r i a t i ons ,  we  ob ta i n

xi<rvr i1+ c u,+ K ur- I {(u, ,ur,p) -  R fr)  6
T T
| -  '  r '  : '  f  r  a[ i
I  x ' ( M h  +  c h  +  K h ) d t  =  |  x ' (  -
J  

' ' - -  J  - P
o o

T +

6p

' r  , , ,  i "
l r ( M  U r +  C  U r +  K  U r -  v ( U r , U r , p )  -  R  f r )  6 T  +

i ; 'c,r i i  + drr * r tr)ot = i ; '< # op + R 6r)dt ,
J J " P

+  R  6 f ) d t  ,

- a W - a P
w t r e r e  K = K _ _ , C = C _ _ _ ;

o u  o u

Integrat ing by parts the integrals in the equat ion

af ter  some nanipulat ion we express the values of  hr ,  h,

6Ur,  6U, . "

6ur= hr+ ur6T , ou = hr+ ijroT

S u b s t i t u t i n g  ( 5 . 6 )  i n t o  ( 5 . 5 ) ,  w e  o b t a i n

f  M A- -  UrAr -  Ar l lT=  -Pu 
t

l ' T

I
I  r ' r  <^- +;-)  = PL '
\ " - T

I  ,  r  As the number of  unknowns in the system (5-9)

nurnber of equations, the end values of the system

determined as

(s .  e )

exceeds the

( 5 . 8 )  c a n  b e

1 q  a \ ,
\ v  I  J  I

express the

, , - l  T
\ r = H " = 0 , \ r = l i - P v  , P - r =  M  e i r _

T T

R e g a r d i n g  t h e  r e l a t i o n s  ( 5 . 8 ) '  ( 5 . 9 ) ' ,  w e

va r i a t i on  o f  t he  f unc t i ona l  ( 5 .3 )  as

'e o7 a, a7
a t - l ( - 6 f + - 6 p ) d t + - o T

*  u r  d p '  a T
( s . 1 0 )



a,
where  -=  ( l '+  r l '  )R

af
, == (^'* u',1 * *" ,

ap ap (s..u.) the functions g. (t ) . The components of the vector g(t ) being

pr€scr ibed,  the var iat ion 6f( t )  is  presented as

a,
-=r,(u,,u-,p)- (xl+rf ) {cu.*KU"-v (ur,ur,p )-Rfr )- (ilM-\ldr-r,;K, )u".
aT

The relat ions (5.11) present the gradient  vectors of  the

functional / through the parameters p, controJ- time T and inpuL

funct ions f ( t )  at  each t ime instant  f rom the interval  tO,Tl .  The

opt imal i ty  condi t ion is  expressed as the eguat ion system

a1r a,
r - - v ( s . 12 ) '

ap af dT

that  is  to be solved together wi th the conjugate equat ions (5.8)

w i t h  t he  end  va lues  (5 .9 ) ' .

The solut ion of  the system (5.12) in an expl ic i t  form can be

found in very few cases, therefore practically the minimurn point

of the functional 3 is obtained by enploying gradient.

optimization algorithms beginning from some initial approximation

n f ' T r T T n
v ,  L ,  t

In the case of a fixed-time problem aII the above presented

relations remain valid assuming the value 6T=O and ignoring the
af

derivative - .
q: 

a,
The values of the function - at the time points from the

af
interval  te lOrTJ present the inf in i te-dimensional  gradient  vector

of the functional , However, in practical cases it is

reasonable to restr ic t  ourselves wi th the f in i te-dimensional

control functions-

Let 's  present each component of  the vector  f ( t )  as a

superposition of a finite number of basic functions as foJ.lows

f ( t )  =  t a l r  g ( t ) (s .  1  3)

The components of  the vector  4*r( t )  are the funct ions

8. ,  ( t ) ,  j=I ,T composing a basic funct ion system, and ta l  is

the coefficient matrix, in the i-th co].umn ai 
"orrt.i.rirlg1 

th"

coef f ic ients of  the expansion of  the funct ion f ( t )  in terms of

6 f ( t )  =  6 t a l r  g ( t )  ,

S u b s t i t u t i n S  ( 5 . 1 4 )  i n t o  ( 5 . 1 0 ) ,  w e  o b t a i n

'  ' r ( a t  
-  d l f  1  a ,

6 '  -  |  |  - 6 t a l '  8 ( t )  +  - 6 p  I  d t  + - 6 7

J  L a r  a p  )  d T

af

In order to obtain the gradient vector of the functional 3

in the space of  the coef f ic ients a l  r  H€ t ransform (5.15) as

follows:

6f- -

. a1f af
yrhere - (t)  is the i- th component of the vector -(t) ,  and

. ' ' ,  
u f '  a f

6 (d)  -  the  i - th  co lumn o f  the  mat r ix  6 ta l  .

Tak ing  the  t ranspose in  (5 .16) ,  we ob ta in

ri 
'r at 'r o3 ag

6 t  -  )  (  |  _  C ' ( t )  d t  )  6 a '  +  |  - o p  d t  +  - 6 T  ( 5 . 1 7 )-  
1 - . ' l u r , -  J a p '  d T
! : 1  0  r  o

( 5 .  1 4 )

/tr I tr \

throush C: , the

( s .  1 B  )

i n  t he  f i n i t e -

t a l  i s  ob ta i ned

in sequence as a

Deno t i ng  i ^  (S -17 )  t he  f i r s t  i n t eg ra l

riaiiation 6, canr be expressed as

6 3 -

) -  
j  

; r (a") 's( t )dt  
+ j  l  op ot  *  

uJ 
o,  ,  (s.  16)

-- 
', dF aF

)  G l 6 a ' + l - 6 p d t + - 6 T ,
L -  I  J a D  

^  
a T

! = a  o  r

-  
' r a f

w h e r e  G i  =  |  -  g ' ( t )  d t
"  J a f

e i 
The gradient vector of the functional ,

dimensional space of the elements of the natrix

.by presenting the components of the vectors Gr

row-matrix

120
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I

a ' t ^ r . ' r ^ T \

t t . r f  

=  \  u r t  u 2 t " ' t  u h  ' '  t ( s . 1 9 )

ag
where is  t ime independent.

a l a l

Truncation of dynamic contributions of higher modes at the

opt imizat ion of  feedback parameters.  In p lace of  the var iat ional

equa t i on  (5 .5 )  t he  f o l l ow ing  sys tem can  be  emp loyed  ( see  (1 -13 ) ,

( 1  - 221  )  :

A1,ll
* o ] *

( 5 . 2 ? )

The gradienL vector of the functional f, in the space of
parameters p is obtained from the retation

aJr ?I. - r ar,y
_ =  l ;ax l *  , l )  o :  *  a> .1+ g ly  a l  I  I  a t  (s .23)
aP J '  

'  '  t  aP

The advantage of such an approach is that the conjugate
systen (5.21) has a considerably lower d imension t .han the source
e q u a t i o n  ( 5 . 1  ) .

5.2 INYERSE DYNAMIC PROBLEU APPROACH FOR CONTROL SYNTHESIS

5.2.1 Progrannmed contro l  synthesis

Consider a Iinear mechanical structure governed by the
equation of notion

M U + C U + K U = R f ( 5 . 2 4 )

where M.*. ,  C.* . ,  \ "^-  st ructural  mass,  danping and st i f fness
matr ices,  U." ,  -  nodal  d isplacement vector ,  R""_ -  Lhe matr ix

transforming the input excitat.ion f_", into the equivalent nodal

forces,  where the re lat ion In(n is  held.

To solve a prolJrarrmed control synthesis probl-em means to
obtain an input  vector  f  ensur ing a prescr ibed rnot ion law U(t) .
Enploying the inverse dynarnic problem approach, the control_ law

synthesis is  based upon the symrnetry of  the structure of  the

_ ga.lhematical rnodel and upon the inverse of the operations

. . .P resen t i ng  t he  essence  o f  t he  con t ro . I l ed  ob jec t  [ 115 ,129 ] .  I n  t he

.case of  the elast ic  st ructure (5.24) the problem is compl icated
by the circumstance that the range of the matrix R and the number
of  contro l  funct ions f  are s igni f icantJ-y fess than the tota l
d i rnension of  the structural  equat ion.  As a resul t ,  the matr ix  R

I  62  +  d i ae (  p  )  6z  r  6 i sq (oz )  62
t  v '  I  t  v '  a '  I

_ a i l  _ a W
=  A '  -  ( a  O Z  + t 6 Z  \  +  L '  -  A .  6 2.  au  .  .  2  2 '  t  a lJ  t  t

( s . 2 0 )

d lag(oz )  6z-  = o1 1 ao-  6 l . .+^-6: - - )  + ^ ]  
u!  

o.oL.  + a '  
dw 

6p ,2 2  
dU 

t  a  2  z '  z  
a IJ  

L  I  t  
up

where notat ions coincide wi th those of  the Chap.1,  assuming R=0.

Representing each of the vectors \, F as two subvectors

. f ' l  [ " . l^= l^ -1 ,  p=1,  
l ,  we ob ta in  the  con jugate  equat ions

|  2 )  |  2 )

(kr )- 'a'+ar r El ' .
I  

t  1  1  t  t z ' z '  r z  I  a z ' z '  z  a  
L a U J

t
,  ,u . r , ,
|  -  "  r '  . . r .  1 r - r \ - 1 , - r  r ,  r , J r - r . t , ^ t , f a P l t
L t  u , -  c l u ,+  t k l - k , ( k l ) - ' k : , 1  p t  t - k , , ( k , , - ' " ' * " l l l r - u j  ,

- aIi
where k =diag1., ' l-x],, k =diag(oz )-k1,, c.=dla€( p. )-"1 

ui ",

al[ dul ail
k  = a r  a  .  k  = l Y  i a  ] <  = a l  - a - ,

l l t a u r ' L z . d u z z . a L z

Consider ing the case p = 0 in the expression of  the target

f unc t i ona l  ( 5 -2 ) ,  t he  equa t i ons  (5 .21 )  a re  t o  be  i n t eg ra ted  w i t h

zero end values,  i .e. ,  x .  =\ ,  =p.  =u,  =0.  The subvectors \ . , t  .  i .

at each time point .." ouJ.i'la l.o,l the rerations



canrt  be inverted and f  can' t  be imediately obtained f rom the

equat ion (5 -24) .

The most sinple alternative is to employ the least squares

app roach  and  t he  gene ra l i zed  i nve rs i on  o f  t he  ma t r i x  R  ( t 48 ,801 ) :

5.2,2 L inear c losed-Ioop contro l  synthesis

Approximate contro] '  synthesis.  The pract ical  use of  the

programmed contro l  laws obtained in Chap-5.2.1 is  that  they can

be employed as a basis for  the c losed-Ioop contro l  synthesis.  The

c1osed-Ioop control. can be obtained by prescribing the necessary

Hot ion laws l inear ly re lated to their  t ime der ivat ives (e-g. ,  a

supe4 )os i t i on  o f  exponen t  f unc t i ons  [ 115 ,129 ,80 ] ) .  Cons ide r  a

Iinear system presented by the structural. equation of motion

(5.24r -  I t  is  necessary to obtain the c losed-toop controf  f=f(U)

such that the motion of the structure would match the prescribed

mot ion law U(t)  = U*<t) .  Consider only such aper iodic mot ion laws

U*(t )  t r t " t  can be presented as

Nevertheless. regarding the case of eJ.astic structural

vibrations in the lower range of eigenfrequency spectrum, a

control in the subspace of nodal. coordinates is preferable. . In

order to obtain such a contro l  law, the equat ion (5.24) is

presented in truncated nodal coordinaLes as

f ( t ) = n * ( N t i + c U + K U )
'- .':,

( s .  ? 5 )

(5 .  26  )

( 5 . 2 7  )

rre obtain an

I 
t 2. + dlae( t,) ;,

t
+  d l a g ( o z )  z r =  a r  R  f  ,

d i a A ( - ' ) z  = a t R f
2 2

u*< t>=u< l *  e \ t +  
P  

e ' t )  , ( s . 2 9 )

Relaxing the control quality requirement we restr:ict

ourselves with ensuring the necessary motion J.aw only for several

components of  the vector  
-U(u,  

and present ing them as U(t) .

Forming the the matrices Lr, L" from the corresponding rows of

Ln,  L"  ,  we obtain Uhe rel -at ion

T T -  e o
V _ A L A A L

t  t  2 2

A f t e r  s o m e  m a n i p u l a t i o n ,  f r o m  ( 5 . 2 6 ) , ( 5 _ 2 7 )

eguation of not.ion

i;'u, * diag( p,l i;'fr, + diag(ozl i;'fr, =

= t  d iag( . : )  i ,  o iagt l  / -z)  t r  + ^r  I  R f  (5.28)
2  : ,

I f  U(t )  is  prescr ibed,  the programmed contro l  f ( t )  is

immediately obtained f rom (5.28) assuming that  the nurnber of

displacements in U is equal to the number of modes with preserved

dynamic contr ibut ions ( i .e. ,  the nratr ix  A,  is  to be square and

nonsingular) .  The nonsingular i ty  of  the r ight-hand s ide matr ix  in

(5.28) is  necessary,  otherwise the problem is to be Bolvea

enploying the least  squares approach.

where U -  the displacement vector  def in ing the end state of  a
-'3tructure, 

and the exponents \(0, p<O
' Obviously,  the mot ion Iaw (5.29) sat is f ies the re lat ions

r l K , ^ .  i " < , ^ r  ^ ' n i < , '  ; , ' J r ,  .  ^U  ( U ) = U  ( U ) = U ,  U  ( o ) = U ,  U  ( @ ) = U  , i . e . ,  w e  c o n s i d e r  a n  e l a s t i c

transfer of a structure from one stationary state to another.

Assume the results of measuring the displacements and velocities

of .  the structure points at  each t ime instant  being presented as

vectors

( 5 . 3 0  )

where Q -  the t ransformat ion matr ix .

In order to obtain a completely observable system i t

necessary to match the condi t ion faf fk(Q)=r l ,  that  is  impossib] .e in

most cases.  Therefore t t re reconst . ruct ion of  the values of  the

vector  U employing the measurement.  resul ts g isnr t  unique.

EnpJ.oying the general ized inverse of  matr ices,  the vector  U is

presented as

u = Q + g + ( r - Q + Q ) y , / q  e 1  \

,  where I  denotes the uni ty matr ix ,  and y is  an arbi t rary vector .
'Select ing the value of  y as

1 2 4

1 2 5



Y = G g  ,
where C.*u-  constant  matr ix  (unknown for  the present) ,  we present

t h e  r e l a t i o n  ( 5 . 3 1 )  a s

u=  r  Q++  ( r -Q+Q)c  re=6s .  ( 5 .32 )

Denoting through I the equivalent nodal force vector

a nodal  forc ing Iaw ensur ing the prescr ibed mot ion l -aw U*<t> is

obtained as

Fx=Mi i *+c t l ' +xu * (s .33 )

with regard to the equaLion (5.29),  the accelerat ions U* . . "

expressed through velocities and displacements as

( s . 3 4 )

As only the va.l-ues of g and g ca.r le measured, employing ther

re l a t i on  (5 .32 )  we  ob ta i n

if = <^ + p) fr I - ^p fr g * ^u u

* n . r " f i = t R + + ( I -  n + n )  H  I  ,  a n d  H  -

matrix unknown for the present.

S u b s t i t u t i n g  ( 5 . 3 5 )  i n t o  ( 5 . 3 3 ) ,  w e  o b L a i n

r '=vf re-sf rg* lu,

where V = l{ (x + p) + C , S = K - \,, M , P = xp, M

Now the values of  the input  funct ions f  are to be expressed

Lhrough the neasuring results I , A - Ernploying the least sguares

approach i t  can be done as fo l lows:

- x  i - x

FinaI Iy,  the obtained c losed- loop contro l  system

presented as shown in Fig.5.1-  According to the re lat ions

(5 .37 )  t he  i npu t  { ^  t .  app rox ima te t y  ob ta i ned  as

Fig-S.1 Linear contro l  system obtained by means of  the inverse
dynamics p.roblem solution

Fig.5.2 Control  system wi th the logical .  feedback c i rcui t .

i ,

f ig-5.3 Control  system wi th the logical  feedback c i rcui ts for
each modal coordinate

the

(s .3s)

constant

r/tr ?-6' \

' ( s . 3? )

c a n  . b e

( 5 . 3 6 ) ,

Elqstic structure

Etostic structure

Logicol
ci.rcuit

r I  I '  L  L
LLqSt rc  s  t rucLure

.  U .  r - - - '  I

I Logicol L- li j--i Q F--'
l c t r c u l l l l . - - - ,

Io"
t l

I Lcshq! L_ | |_l_r_r!_J__ 
, I erin



I
t x - p p r r
r '  -  r \  l  v  '

and the resulting motion of a controlled structure is

M U + C U + K U = D r x

where C = C - RRVQQ, K = K - RRSaQ .

Taking account that the considered motion of the structure

can be considered as a transfer between two states of static

equilibri 'n, it appears more natural in place of the approximate

re. l -at ion (5.38) to employ the stat ic  equi l ibr ium equat ion fS{; .qhe

obtained closed-loop system at the tine point t = o as

- - x1 \ U = r I ' T  .

input vector ff. can

.x -+, rT
I  = N , A U

where

r  -  1  -  ' l - r F

v,= 
[a: 

R+diac 1.] li;'i.oiag < 1 z-' lol n] 
-' 

lut*, r. )i.'+ 1r+i, 1 ̂;'] o- i

5r: far n+olag 1.' 1 l-'l-arqg ( 1 /,., ) a: Rl' fdl* t.'', i-r-^,i-rl ff- t -
" - L - a " ' * t r c \ - l  , - t  - a  

2  
-  J  L  

r e ) \ * l  / - 1  " - - t  
l *  

t

p,= fal n+oiag q.' yi-'i- otag 1 1,2, .= 1 a' Rl 
-'\p;;'

L  r  " '  r '  |  - .  
"  J  /

rn prace of the blocks frV6, frSd in Fig.5.1, the control
sySben now contains the b]-ocks V', S' correspondingly.

Obtaining a stable control systen. The expressions of Lhe

feedback c i rcui t  coef f ic ients contain the arbi t rary constant

ma t r i ces  G  and  H  ( see  t he  re l a t i ons  (5 .32 ) ,  ( 5 .37 ) .  I t  f o l ] ows ,

that the values of these matrices can be selected in order to

ensure the stabi l i ty  of  the contro l  system. Obviously,  in

gonelal ,  the stabi l i ty  isn ' t  guaranteed by employing the

synthesis reJ.ations presented above because the structure status

vedtor U is expressed through the vector of the measured

quan t i t i e s  app rox ima te l y  by  means  o f  t he  re l a t i on  (5 .31 ) .  The

aibi t rary select ion of  the matr ices G, H presents a possib i l i ty

tb'achieve compromise and to ensure stability of the control

system simuJ-taneously obtaining a motion law closest to the

prescribed one- E'or this purpose the Appendix 4 presents an

al.gorittrn based upon a grradient procedure of minimizing the real

parts of  the eigenvalues of  a cJ-osed-J.oop system [58] .

5.3 SPEED-UP CONTROL SYITTHESTS

The closed-Ioop controf system synthesis approach presented

in Chap.5.2 enables to obtain l inear feedback c i rcui t

ampl i f icat ion coef f ic ients.  Nevertheless,  in many appl icat ions i t

isn ' t  desirabfe to employ l inear feedback c i rcui ts.  As preferable

pppears the separation of the input and output of the system by

employing J.ogical .  feedhack c i rcui ts.  We' l I  regard the input  of

the. Iogrical- circuit abJ.e to acquire arbitrary values, and the

ou i ' pu t  -  two  o r  seve ra l .  f i xed  va lues  (e .g . ,  * 1 ,  0 ,  - 1 ) -  r n

general, such a system can be classified under speed-up contro].

systems I39l-  A formal  ] .ogical  feedback c i rcui t  synthesis is  a

(5 .38 )

(.5.39 )

consequently, the

the relation

( 5 . 4 0 )

be obtained from

( s . 4 1 )

. (s.?e>,

the square matr ix  Q,

( s . 3 1 ) ,

dynamic contributions of

and carrying out the

we express the control

Approximate control system in a subspace of modal coordina-'

tes-  consider the equat ion system (5.26) wi th - the t runcated

dynamic contributions of higher modes in place of the equation

(5-241. We require that  only the mot ion law of  n d.o. f -  would

match the t ine law (5.29),  and the displacement vector  of  these

d-o. f -  would be represented by the vector  U :

f f t t>= f r< r *  
t - " ^ t *  u "u t )

P-X X_P

In place of the matrix Q we consider

obtain ing the re lat ion

Selecting the number of retained

the lower modes being equal to IIl

m a n i p u l a t i o n  s i m i l a r  t o  ( 5 . 3 2 ) - ( 5 . 3 5 ) ,

force vector as

l t  -  n - i -u - {  6

i * =v ,g+s ' g+P f r ,  ( 5 .36 ) '

129



compl icated task,  therefore i t  is  usual ly  obtained f rom general

engineering considerations empJ-oying available logical. elements.

A very simple tracking controJ. system with one input and one

output  s igmal is  presented in Fi9.5.2.  Such a contro l  is  of ten

insuf f ic ient  for  e last ic  st ructures wi th ma-ny d-o. f -  becau$e nt

doesn't damp the residual elastic vibration due to higher modal

components.

We'11 show, that the control system synthesis regar:dri'ng

several modal coordinates is possible enploying the equations .of

motion with truncated dynamic contributions of higher modes. In

such a case a separate logical circuit is empJ.oyed for ensufiiltg

control of each modal coordinate. As a start point for the

synthesis we employ the equat ion system (5.26),  select ing a

subset of modal coordinates in order to obtain a square and

nonsingular matrix arR of the dimension Inxln. In the equation

(5.26) we make the subst i tut ion y1= larR1-tZr.  Denote the vectbr

of measured quantities of the tength fl through U, and from 
'the

corresponding rows of  the natr ices A. ,  A" the matr ices Lr ,  L. .

are obtained.  Prescr ibed displacement values are presented by: .Lhe

vector U... From the definition of modal displacements fol]-ows

the re lat ion

Z , ^ = a ' M q ^ ,

and the following equality takes place:

the cbntro l  system can be presented as shown in Fi9.5.3.  rnputs

of . logical  c i rcui ts can be suppl ied wi th the general ized veloci ty

vector y1=QUr if it appears necessary for the operation of the

::control. algorithm and if the neasured values of the velocities

are avai]-ab].e.

As i t  can be seen f rom Fi9.5.3,  in addi t ion to the main

,feedback we have obtained an additional feedback in the conLrol

.c i rcui t -  I t  can oPerate asynchronously assuming inf in i tesimal

i  delays in the electr ical  conLrol  c i rcui t ,  as wel l  as

r. Slmchronously employing the clock frequency significantly higher

than the frequency of the highest node with the retained dynamic

contr ibut ion in the equat ions (5-26)-

The obtained control system can appear non-optimal because

of neglecting the higher mode dynanic contributions as weII as

''because of an heuristic approach defining the basic Iogical
'c i reui t .  Thelefore the contro l  system can be opt imized employing

..the 
optimun system control techniques for obtaining the values of

.some parameters (e.g. ,  t ime points for  voJ. tage reverse'  the

. ,m; igmitudes of  vol tage pulses,  the width of  insensi t iv i ty  range,

etc. ) - The techniques for soJ.ving such problems are presented in

Chap-S-1.  I f  logical  c i rcui ts are employed, the expression of  the

funct ion Y1U,U,p) contains the discont inuous funct ions

The der ivat ives of  suctr  funct ions wi th respect  to the

variable X as weII as with respect to the parameter a contain

the 6- funct ions.  Dur ing the computat ion we employ the numerical

equivalents of  these funct ions presented in Fig.5.4.  For example,

the logical  funct . ion presented in Fig.5.2 resul ts in a

block-diagram in Fig.5.5-  I ts  mathemat ical  expression is

r (u ,p)  = h( lu-ur^ l  -  p)  f  n<u-q^ l  f l -+  (1 -  h(u-u, . ) )  ur+ ' l

From (  5.42 )  i t  fo. l lows

z ,  =  i - n r  f r  -  i , o iagq lz - ,1a ]  n  r  r ,
2

and, consequent ly,

y .=  (a :R) - ' ; ; ' t  f r  -  i .o i "e t1  /u . ) r r  R  f  l .

then,  denot ing

v  =  i , o i a g 1 1  / _ . 1 o ' R ,  s  =  ( ^ r R ) - ' i , ' ,  q  =  l a r R ; - ' i - ' ,

u-u  = i ' ( r - ,
r n  I  L  t

( s .  42  )

( s . 43 )

(s .44  )

( o ,  x < a ,  l - 1 '  
X ( 3  '

h ( x - a ) = . |  ,  s i g n ( x - a ) = j  0 ,  x = a ,
1 1 ,  x > a ,  L  t ,  x > a -

1 3 0

P = (^ rR) -1^rM

( s .4s )
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The following derivatives with respect to U and p can be

employed for obtaining the gradient vector of the target function:

2 = ,orlu-u..1- p) slsn(u-u..>[ n<u-q.l ' l t-+ (i
aU

+ h( lu-u. .1  -  p) is ign(u-ut . )  v-

-h(u-Ut^ ) )w+ ]+

I i,<u-q.lv-aI

a p "
_26( lu -ur . l -  p )

- slsr(u-q^) ** ],

+ (1 -h(U-u.^))w+ 
]  ,

Fig.5.4 Numerical  equivalents of  d iscont inuous funct ions

F ig .5 .5  B lock -d i ag ram o f
i n  F i g . 5 . 2

the feedback algorithn Presented

5.4 FORCED RESONANI VIBRATTON CONTROL

Problem formulat ion.  I f  p iezoelectr ic  v ibroconverters (vc)

are employed as inpuL links of vibrodrives, it is necessary to

excite their vibration ensuring the prescribed motion laws and

paths of  some of  their  d.o. f .  Al though in real i ty  VC operate in a

nonlinear interaction with other links, here we resLrict

ourselves with the linear vibration law synthesis problem- Such

an approach appears as reasonable from the engineer's point of

view, because at the first approximation many mechanical systems

containing vC are designed considering the ability of free VC to

produce prescribed vibration paths-

We consider the structural dynarnic eguation (5-24) as a

mathematical mode1 of a VC, the excitation frequency being close

to one of the resonant freguencies (only in the vicinity of the

resonance it is possibJ.e to obtain sufficiently large values of

the vibration arnplitudes)- Presenting the problem in moda1

coordinates, i.e obtain

i r *  P r z r * - ? - z r =  6 l  R f  ,  l = l - , n (s .  46  )

and the motion Iaw is approximately obtained by superimposing the

contributions of the modes possessing the eigenfrequency values

in the v ic in i ty  of  the exci tat ion f requency,  and neglect ing the
contributions of the remaining modal components.

Three problems of different complexity can be distinguished:

? signx

I u- utnl<
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fAi

a) exci t ing v ibrat ions of  the prescr ibed mode, b)  obtain ingi

prescribed planar or spatial vibration paths in symne.trig.

st ructures by means of  nul t i -phase exciLat ion,  c)  obtain igg.
prescribed planar vibration paths by means of a single plrase

harmonic excitation in the vibroconverters possessing severar,.
nodes with approxinately equal eigenfrequency values.

Exciting vibrations of the prescribed mode is the sinplest
synthesis problem. Assume that it is necessary to excite . the
vibration of the i-th node. If the excitation frequency o = 

?r ,
in p lace of  the system (5.46) we consider only the i - th equat ion,

presenting the equivalent excitation force of the i-th mode by
the right-hand term 6rRf . The most effective excitation of the
modal vibration is obtained the equivalent force being of the
maximal magnitude. Assume the elenents of the vector f being
harmonic funct ions,  i -e. ,  f  = fAsi l t - t  wi th prescr ibed ampl i tudes

1A= tf* . rn this case the maximal amplitude of the 
"quj-vafe;j

excitation force of the i-th mode is ensured obtaining the
forcing amplitudes from the relation

fl = 
"rg, 

(61 R)j , (5 .  47  )
wtrere (oTR). denotes the j-th element of the row-vector 6lR.

Prescribed p]-anar or spatial vibration paths in synmetric
structures by means of nulti-phase excitation are obtained, if
vibrations of several modes are excited simultaneously. The
vibrations of each mode are to be excited with the prescribed
phase shift a{p. Assr'^e the eigenfrequencies of several modles
being coincident, as it is the case in the symmetrical VC, such
as r ings.  c i rcular  and square plates,  cy l inders etc.  Exci t i r ig

simultaneously the vibration of i-th and j-th modes with the

iinput excitation can't present two harmonic signa}s with

dlffirent phase shifts, otherwise summers of input signals are

micessary. Taking on account that the left-hand sides of the

equat ions (5.48) are ident ical ,  the re lat ion between the

vibration anplitudes and phases of Zr, Z. are deterrnined by the

relation between the anplitudes and phases of the excitation

sigmal. If Ap is a prescribed quantity, the amplitude values of

the elements of the vector ffl satisfying the relation

-r  -  -Ar

. r  ^  -A io .  n  r
J

are to be obtained, where a - prescribed ratio between the

vibration a-nplitudes corresponding to the modes i and j.
'  

Tf  there is  no possib i l i ty  to sat is fy accurately the

relat ion (5.49),  an approximat ion is  to be found by solv ing the

optinization problem

n a x  |  6 l  R f o t l  ,
fA'

fAi  fAj_ n tr_i--- i 't k  f k  -  u r  n - r r u  ,

(5 .  49  )

(5 .  50  )

e i g e n f r e q u e n c i e s o .  = o . =  e  ,
coordinates appears as

Nonzero values 
"r 

f f t ,  t f i  in

co inc ident ,  i .e . ,  f f i f l i=  O,  1a=15

b,*r, ;  * ; ' r=olRfAisj : r  . r  ,
t -

1
LL,* r,L r*i', =or R-fa s jn (ot+ap ) .

the equation system in modal

( 5 . 4 a )

( 5 -48 )  a re  no t  a l l owed  t o  be

It means that the sarn'e

, fl ' = t f*, -f*)

, .  Such a problem can be solved,  e.9. ,  by means of  an

exharlstive search procedure or employing other discrete

QPtinization techniques. If other values of the amplitudes are
al lowed besides f* , - f* ,  only the constra int  t l t , f }  = {  fx ,  - f* )

gf  the opt imizat ion problem (5.50) is  to be changed.

Obtain

Fingle phase harmonic excitation is possible i f  the
eigenfrequencies oi, -j of two nodes are close but not
coinciding. The excitation freguency o is selected in the
vic in i ty  of  the two eigenfrequencies . r= - j= o.  The format ion of
ttre phase shift between the two modal' responses is presented by
the amplitude-frequency and phase-freguency characteristics (AI'CH
and PFCH) in Fig.5.6.  The v ibrat ion phase shi f t  Ac(-)  depends
upon the difference between the eigenfrequencies o. and -j and
upon the Q-factor  of  a v ibrat ing system, i .e. ,  upon the peak
shapes of the amplitude-frequency curve. rn general, peak values
depends upon the selected excitation ].aw and aren't known in

1 3 4
1 3 5



advance. The algorithm for obtaining the excitation law reads as

fo] . lows:

A1gor i thm 5.1

1.  Consider the equat ion system

2 r * r r i  * - 1 2  = 6 :  R f A i s l n . t ,

i, * ,, L * .t. ,, = o', R rAjsin -t

I
I
L

( 5 . 5 1  )

Eor Z. and Z. the PFCH are obtained. The AFCH are obtained

for  uni ty exci tat ions,  i .e. ,  assuming the r ight-hand s ides of  the

equat ions of  the system (5.51) being equal  to s inot .

2. According with the PFCH (independent of the excitaLion

amplitude) the o value is obtained ensuring the prescribed phase

shift A1a. The amplitude values of the two AFCH corresponding to

th is o value are marked (a,  and a-  in Fiq.5-6 )-

3.  The prescr ibed rat io of  the general ized displacement
L .

amplitudes being equal to 
-; 

= ^ , the excitation vector fA is
J

obtained satisfying the relation

^ T  D  f A i ^v .  r i  r  e .

-;i-;-FL
v ,  r i  r  e .

3 of the Algorithm

is to be so]-ved:

I  x r  p  f A i l
|  

- i  . r  -  |

t he  cons t ra i n t  (  5 . 52  )  ,

5 . 1  t he  f o l l ow ing

(s. s3 )

- A i - A j . J . x r
I r - L € t . l - r - - L j l

The constra int  fAi fAj-  n v-T-I k  I ; ' -  u ,  K= l , n  ,  i sn ' t  i n c l uded  i n t o

(5.53),  because the phases of  input .  exci tat ions are coincident .

As a rule, the value of o ensuring the phase shift Ap between Lhe

two modal responses isn't unique, therefore the algorithm should

be applied at several excitation frequency values in order to

obtain the opt imal  solut ion.

tdi 0)

Fig.5.5 Obtain ing a v ibrat ion
response components at

urj

phase difference between two
a s ingle-phase exci tat ion

( s . 5 2  )

During

opt imizat ion

t
I
t

L.he step

problem

max
fA'

with

137



Paer 2. APPLICATIONS

Vibro'drives (VD) are the mechanisms converting high-freguen-

cy vibrations of an input Iink into the directed stepwise or

continuous motion of an output link by, means of essentially

nonlinear mechanical interaction forces.

vD possess several specific features naking difficult the

Lnmediate application of the existing theory of vibroconveyers

U9 ,122 ,1231  and  v i b ro - i r npac t  sys te rns  [ 50 ' 133 ] .  D i s t i nqu i sh ing

features of vD are small vibration anplitudes (several microns)

and high vibration frequencies (dozens of kHz), therefore during

the interaction between input and output links a contact surface

elast ic i ty  is  to be taken on account.  t l icro inpacts can' t  be

assumed instantaneous, as an impact tine takes a significant part

of a vibration period. Consequently, a stereomechanical model

characterized by a velocity restitution ratio in general is

insufficient for presenting the contact phenomena in vD.

Moreover, a resonant nodal vibration of the input links usual-ly

is employed in VD, therefore the distributed parameter or finite

element models are necessary.

An overview of numerous theoretical and experimental

investigations of \/D is presented in [371. The nrain resu]-ts of

r esea rch  have  been  p resen ted  i n  [ 56 ,116 ,47 ,119 ,941 .  Fo r  ob ta i n i ng

adequate nathematical node].s of vD a correct representation of

the contact interaction is of primary importance. Together with

the stereomechanical. impact nodels, the combined local and wave

contact interaction models have been taken into account, the

viscoelastic surface rheology approach being conunonly employed.

The finite element models enable to present the complex gfeometry

of  the l inks of  vD and the inverse piezoef fect  in p iezoceramic

input  l inks [71,133] .  F in i te e lement formulat ions based upon the

up,clated tagrangian approach enable to . take account for large

s t ra i ns  t ak i ng  p l ace  i n  t he  con tac t  zone  [ 117 ,10 ] -  Neve r t he less ,

the contact zone investigation probJ-em appears to be of similar

complexity, and often even more complex than the gJ.obal problem

of obtaining the rnotion law of a vD with a prescribed contact

interact ion character is t ic .  Therefore usual ly  compromise

formulations are preferable, restricting with smalJ. displacement

finite element models and the viscoelastic rheology of the

1 3 9



contact  interact ion [15,36,97,711.  The surface rheology approach

can be regarded as an extension of the oblique impact phenomeno-

logical models with lunped parameters t1331. As promising appears

an approach taking account for rigid body motions of finite

element models of vibrodrive links, a full finite element

formulation of free and restricted riqid body motions' of

deformable bodies being presented in [40] .

An effect of sliding between the links of a VD und.er the

sliding friction forces is to be regarded simultaneously with the

deformation of an interface Iayer. Usually local contact effects

are assrured independent at each separate contact zone. The more

complex nodeJ.s are to be enployed for the VD with the continuous

con tac t  zone  [ 71  l .

A vibroconverter(VC) should be regarded as the main part of

a vD. VC produce mechanical vibrations under the high-freguency

al ternat ing voJ. tage appl ied to their  e lectr ic  terminals-  Their

operation can be based upon different effects, such as

electrostr ic t ive,  p iezoelectr ic ,  magrretostr ic t ive etc.  [140] .

As a ruJ.e, the operation of piezoelectric vibroconverters is

based upon the excitation of their nodal vibration 
- 

employing an

inverse piezoelectric effect. fn general it presents a complex

set of phenomena in polarized dielectrics and connects elastic,

electric and thermal properties of piezoelecLric materials- The

constitutive relations of electro- and magnetothermoelasticity

are obtained in [  1 1 ,  33,  20 I  .  The invest igat ions of  e lectro-

mechanical vibrations in piezoelectric rectangular pJ-ates and

ax i symmet r i c  she l l s  have  been  ca r r i ed  ou t  i n  t 83 ,84 ,96 ,991 .  I n

t102]  the behavior  of  p iezoelectr ic  v ibroconverters in an

electr ical  c i rcui t  has been presented by means of  equivalent

four- terminal  networks,  the reference [100J being an overview of

var ious engineer ing appl icat ions.
' 

The finite element techniques for the piezoeJ-ectric struc-

ture analysis have been developed in 121-241 by Y.Kagawa 
'et  

a l .

rn [104]  the techniques have been appl ied for  the t ransient

v ibrat ion analysis in two-dirnensional  p iezoelectr ic  YC, 
.and.  in

t 3 ,711  -  f o r  t he  dynam ic  ana l ys i s  o f  i npu t  l i n ks  o f  VD .  . ,

6. MODEL EOUATIONS OF VIBRODRIVES

In this chapter finite element modeJ-s of piezoelectric

vibroconverters (VC) and vibrodrives (VD) are obtained and the

dynarnic characteristics of VD are fornulated-

Enploying the variational formulation of thermopiezoelec-

tricity, the relations for obtaining maLrices of piezoelectric

continua finite elements and the relations for presenting the

propert ies of  VC as electr ic  c i rcui t  e lements are obtained.

Several energy dissipation models during the vibration of a VC

. 'ar"  considered.  The contact  interact ion models for  point-

interaction and travelling wave VD are obtained enploying a small

displacenent finite element nodeJ. and phenomenological mode1s of

an interface between contacting links. A fuJ.l model of a VD is

,.presented taking account for rigid body motions of the vibrating

Iinks, the finite element mo'dels of each 1ink being presented in

truncated moda]. coordinates.

6.1 F'INITE ELEMEI{I MODELS OF PIEZOELECTRIC VIBROCONVERTERS

6-1.1 Var iat ional  formulat ion of  thermopiezoelectr ic i ty

. Consider a piezoelectric body occupying a volume V and

_ 
bqunded by a surface S - the surface S is divided into parts

. 
S.U So= SrU So= SeU Sh= S such that S, f,l So= S, fl So= Se n S"= 0,

.n being an outward. normal vector to the surface. Assume a vector

of  body forces f  = (X,Y,Z)r  act ing inside the volume, where X,Y,Z
- components of the body force vector in the directions of the

Cartesian axes.  Upon the surface part  So acts a prescr ibed

surface force vector  e.= ( \ ,Y^,2^) ' ,  and a displacement vector

,  Y"= (urr ,u.r ,u"=)t  is  prescr ibed upon Sr-  s imi lar ly ,  upon So,So a

. charge g= and an electric potential p=r dnd upon S" , S" a heat

f{gx Y= and a temperature e6 are prescribed. In the volume V

.  d i sp l acemen_ ts  -= (un ,u . r u " ) ,  s t r a i ns  
" r  

= ( " r t € . t e " , / = r , yB r t ' e ) ,

s t r esses  ou  =  (o r , o . , o " r . . . rT r= rT r . ) ,  an  e l ec t r i c  f i e l d  vec to r
E '= (X ,  ,E . ,Xz ) ,  an  e l ec t r i c  d i sp l acemen t  vec to r  D r  =  (D r ,Dz ,D3 )  ,
thernal  f lux vector  t r r= (h. ,h. ,h")  as weII  as an electr ic
potent ia l  p,  a temperature deviat ion € f rom a certa in posi t ive

reference temperature e- and an entropy density n wiII be

1 4 0
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considered-

operators

In the following rte employ matrix differential

where k - thernal. conductivity tensor, cE- stiffness tensor under

constant electric fieJ.d, gs- dietectric pernittivity tensor under

constant strain, e - piezoelectric stress tensor, \ - thermal

stress tensor, I - pyroelectric tensor, a - material constant
(o = p c, 

";t 
, where C. - specific heat under constant volune),

p -  mater ia l  densi ty,  .o,  do -  in i t ia l  s t ra ins and stresses.

The boundary values defined by surface forces, displa-

cements, charges, potentials, temperatures and therrnal flux upon

the surface parts S. ,  So,  Sp,  So,  36,  S" e S are presented as
lfi]

a ^ ^
- U Uox
^ a n
" a i u
^ n aU V E

a a n
Ay 6i
^ a av A Z A y

a ^ o
6; " dr'.

and an outward normal vector n direction cosine matrices
I^ l-=*=' 'so
L-=-= ,  =S, < 6 .  4 '

(6 .  s )

( 6 . 6 )
A =

c o s ( n , x )  0  0

0  c o s  ( n , v  )  0

0  0  c o s  ( n , z  )

cos  (n ,y  )  cos  (n ,x  )  0

0  c o s  ( n , z  )  c o s  ( n ' Y  )

c o S  ( n , z  )  0  c o S  ( n , x  )

I'1" 
= n"

L o = t =

{;t= **

I 
cos (-,* )

a" = 
|  

cos (n,v )

I cos {-,=;

,  e S- D

,  = S -

,  e S .

,  = S ^

Employing the natrix notation, we present the equations_,of

thermopiezoelectricity for the volume Y as [1'll

( 6 . 1  )

( 6 . 2 )

/ A  a \

rntegrating by parts and applying the Green,s theorem,it can

be shown that for the differential operators A and a presented.

a b o v e ,  a r b i t r a r y  v e c t o r s  f t = ( { .  , E r , ( " )  ,  * T = ( r .  , N z , * e , x . , x o , E o )
and a scalar function ( defined in V and upon the boundary S ttre
folJ.owing relations take place:

E m p l o y i n g  ( 6 - 7 r ,  w e ' I I  p r e s e n t  t h e  e q u a t i o n s  ( 6 . t 1 - 1 6 . 6 y  a s
integral  ident i t ies-

T h e  t r u e  v a l u e s  o ,  € ,  u ,  D ,  E ,  ? ,  t 1  ,  t t ,  € ,  i . e . ,  s a t i s f y i n g
t h e  e q u a t i o n s  ( 6 . 1 ) - ( 6 . 3 )  a n d  t h e  b o u n d a r y  v a r u e s  ( 6 . 4 ) - ( 6 . 6 ) ,

have unique values because of the uniqueness theorem of the
so lu t i on  o f  t he  sys tem (6 .1 ) - ( 6 .6 ) .  Cons ide r  t he  c l ass  o f  v i r t ua l

l  f o + r = p -  ,  e Y i
I

I  
. ' o  =  0  , .  =  V  i

f  . t n = 4 o \ ,  € V ;

I e=au ,  
€V ;

. l  e = - a e ,  € V ;

I t r = - t a e ,  € V ;

( E

I  
o  =  c - (  

"  
-  

" o )  
- .  E  -  X  €  +  a o

. f  o = . t ( " - " o ) + D = e + r e  ,

I n = > . t ( " - . o ) + t t E + o e  , - 1 r  '
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guanti t ies d, fr ,  E, i ,  sat isfying the eguations (6.1) and the

boundary condit ions, and the class of virtual quanti t ies !*,  i l ,
J J .J

E , p , I , satisfying the equations (6.21 and the boundary

c o n d i t i o n s -  T h o u g h  t h e  r e l a t i o n s  ( 5 - 1 t , ( 6 - 2 1 , ( 6 . 4 1 -  ( 6 . 5 )  d o n ' t

define the virtual quantities uniquely, the true values belong to

the c1asses defined above.

Enp loy i ng  t he  i den t i t i e s  ( 6 -7 ) ,  t he  equa t i ons  (6 .1 ) - ( 6 .2 )

and the boundary condi t ions (6.4)-(6.6)  i t  can be shown that .  the

vir tual  quant i t ies sat is fy the fo l lowing integral  ident i t ies:

( 6 . 8 )

Nos we refuse of the assunption that o, D, hr t.1, u are the

true values, supposing that they only satisfy the identities

(  6.9 )  .  Employing the re lat ions (  6.  7 )  immediately for  the

lef t -hand s ides of  (6.9)  and uni t ing the obtained ident i t ies wi th

( 6 . 9 ) ,  w e  o b t a i n

D

r - c c
|  ( a o e ) ' h  d V  =  |  6 e  v _ d s  -  € ^ l  6 e  

" )  
o V

J J = O J
v  s h  '

J  
o- ' { ^ 'o=-  ss )a ls  -  

f  
o - t (Ara  *  r  -  p - ;dV =  0 ,

s v

a - l - - -
I  a p  ( ^ ' D  - o  ) d S  -  |  a p ' a ' D  d V =  0 ,

J  
I S '  

J
s v

r - r -
I  a e  ( a ' n  - v  ) d S -  |  o e  ( a ' r - r  + e  n ) d V  =  0

J  
'  s  s '  J  o

= h  v

The values of  6u,  69,  6€ being arbi t rary,  the last  re lat ions

impose upon a, D, h, 11 the requirement to satisfy the equations

(6.1)  ancl  the boundary condi t ions upon So,SD,Sh. Thus the system

(6.9)  contains the equat ions (6.1)  and the boundary condi t ions

upon So,So,S"-  adding to th is system the equat ions (6-3)  and the

bounda ry  cond i t i ons  (6 -4 ) - ( 6 .6 )  upon  Su ,Sp ,Se ,  we  ob ta i n  a

thermopiezoelectricity problem formulation in terms of

displacements,  potent ia ls and temperatures.  As a resul t ,  i f  v '  'p ,

€  sa t i s f y  t he  bounda ry  cond i t i ons  (6 .4 ) - ( 6 .6 )  upon  S . ,Sp ,Se  and

the integral identities

r - r - r -
I  o e ' o  d V  =  |  6 u ' s - d S  +  |  6 u '  ( f  -  p -  )  d V  ,
J J
v s v

o

a - r
I  oe'o dV = -  |  oe %OsJ J
v s

( 6 - 9 )

f  - * r - . - -  f  + r  f  -
I  e  a  c r v  -  I  u  c -  d s +  |  - I  ^ l  ;  d s +  f o * ' < r - p u  )  d v ,
J J . J S S J
v s s v

o u

f  -* r -  - - -  |  -*  | -  -  -
I  E ' D  d v =  -  I  F - q ^  d s  -  |  P _  a :  r d s
J J r s J s s
v s s

P

r .
-  dS  +  |  a (e^n )  0V
* J

D

|  ( .a*; 'n dv = |  a*o
J J
v s

h

f!

Assume

= o ,  6 = D ,  f r  = n , /  = e  *  6 e ,  E *  = E + 6 E ,
+ . q J " *

= t r r u  = u * 6 u r  p  = p + 6 9  r 9  = € t 6 0 r -  = u ,

where o,  €,  v,  D,  E,  p,  n,  t t ,  € -  the t rue val .ues,  sat is fy ing

a I I  t he  equa t i ons  o f  t he rmop iezoe lec t r i c i t y  ( 6 .1 ) - ( 6 .3 )  and  t he

bounda ry  cond i t i ons  (6 .4 ) - ( 6 .6 ) ,  6  -  va r i a t i ons  o f  t he  t r ue

val.ues, 6e = A 6v t 6E = a 69 .

Subst i tut ing into (6.8)  and taking on account that  6u=0

upon Sr,  6p=0 upon Sp, 6e=0 upon S",  and that  the t rue values

sat is fy the equat ions (6.8) ,  we obtain the var iat ional  ident i t ies



I u,l

iill
Iil
lr,l

l ( ^  6 u ) ' o ^ d V  ,
J "

( 6 . 1 0  )
| .  - -
|  ( -  o p ) ' e ' c ^ d V  ,

J -

r - - r
l l r o - 1 t ( . ' A  -  +  e  a  . p -  l  e ) d V  +  |  o - t p  -  d V
J J
v v

r  -  r  -  r  - -
=  |  6 u ' e _ d S  +  |  o u ' r d V  +  l ( ^  6 u ) ' c - c - d V  -

J _ S J J O
s v v

o

f - f
f  ( a 6 e ) ' ( . ' r  u  -  3 - a  p +  r  e ) d V  =  

|  a o  Q = d S  +
J J
v s

q

r - r .
l ( a 6 e ) ' k  -  e  d V  +  e _ l 6 e  ( o  e  -  r ' a  e )  d V  =
J O J
v v

ill
- -  l - " 1

where N, L, P - form functions, U. = IU-, |  
-  nodal displacernents'

r  
|  

' " '

J"rJ
iD. - noda]. potentials, @ - noda]. temperatures'

D e n o t e  3  =  r  N ,  B "  =  a  l ,  B *  -  a  P  .  S u b s t i t u t i n g  ( 6 ' 1 1 )

into the integral identities(6"10) and regarding that 6u = N oU''

6 p = L 6 o ' , 6 e = P o o ' a n d t h a t t h e i d e n L i t i e s ( 6 ' 1 0 ) a r e v a l i d
' ior  

arbi t rary values 6v,  69,  6e'  we obtain the equat ion system

| *"if + K"U' + T"o' - v"@" = I' ,

J t" 'u' - S'o' + Ii"@' = O' ,' l -

|  , * :  ^  tpYr ' r -  -  e^f l " tO" + G'O" -  Z i  ,
L  

n  e  +  e o Y  u  o

.-where the FE matrices are defined correspondingly as mass'

st i f fness,  e lectromechanical ,  capaci ty,  thermoelast ic ,

thermoelectr ic ,  heat  conduct iv i ty  and heat  capaci ty matr ices:

u .=  f  x ' p  N  dv ,  r ' =  f  s '  . '  B  dv ,  T '=  f  u '  .  BE  dv ,. .  
J '  J  J

. v t Y t Y "

s '=  le '  a=  B-  dv ,  v '=  fe '  ^Pdv ,  w"=  ie l rPdv ," -  
) " 2  J

u ( x , Y , Z )  =  N  U ' =  t  N r ,  N j ,  N r . ' - - .  l

p ( x , Y , z )  =  I  o " =  [  l .  , L r ,  L u , . . .  ] ( 6 . 1  1  )

e ( x , Y , z )  =  P  o '  =  t  P r ,  P ,  P u , " '  )

f- 1 6 € y _ d s ,

s
h

they satisfy all the equations of thermopiezoelectricity and the

boundary condi t ions,  i -e. ,  they are the t rue values of

displacements, potentials and temperatures. The obtained integral

identities can be ernployed for obtaining the finite elenent

rnethod relations for piezoelectric VC analysis-

6-1 -2 Fin i te e lements of  p iezoe).ectr ic  cont inua

Assume the volume occupied by a piezoelectric body being

divided into finite elements. consider the volume V' occupied by

a  f i n i t e  e l emen t  (FE )  w i t h  t he  nodes  i ,  j ,  n , . . . ,  bounded  by

the surface S' . rhe status of each point of the FE is cornpletely

defined by the displacements u, potential p and temperature I

According to the general scherne of the displacement fornulation

of  the f in i te e lement method, the values ot  v,  9,  € at  each point

of a FE are expressed through the nodal. val-ues of these

quant i t ies as
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The vectors f ' ' ,  Q' , Z' are defined as follows:
T

Surface integrals in the latter relations can be nonzero

onJ.y if a FE is situated at the boundary of a piezoelectric body.

After assembling the structural matrices, the eguation system can

be presented as

( 6 . 1 ? )
If at the nodes of the structure additiona]- forces are

applied, they are to be added to the corresponding components of

the vector I .

Consider the thermal flux boundary condition in the form

v=  =  P  (  e  -  e -  *  eo )  ,

where p - heat. exchange coefficient with the environment, €-

temperature of the environrnent, oo - reference temperature.

In such a case it is easy to show, that the heat

conductivity matrix G' and the veitor Z: can be presented ij

If the reference temperature coincides with the environrnent

temperature €-  ,  the egual i ty  Zi  = O takes place.

- In a high-frequency mechanical- vibration analysis of vC the

coupling terns eoVrU , --€o[r; and the heat conductivity term H o

can be omit ted i t  (6.12) wi thout  causing s igni f icant  errors-  In

suett an uncoupled formulation the analysis procedure is

decomposed into thernal analysis and piezoelectric vibration

analysis problems.

A vC employed as an input link of a VD always is to be

regarded as an element of an alternating current circuit,

therefore its electrical characteristics present a considerable

interest- Let's omit thermomechanical and thermoelectric terms in

(6.12r, assurne zero nechanical boundary conditions upon S_ as

u_=0 and I=0 ancl regroup the components of the vectors 6 and a

pi""..,ti,,s them as - = l: '1, a = |.: '.l, where the index "r"
L-. J Lo. J

corresponds to the nodal points on the electric terminals of a

VC, and the index tt2tt - to the remaining nodal. points,

inclusively the nodal points of the surface SD. The charges Q, of

the part of a VC without electric terminals can be assumed being

equal to zerrr, if only the electric field lines don't leave the

volume occupied by a VC, what is practically always the case.

Regrouping correspondingly the rows and coJ-umns of the structural.

matrices and assumingt a harmonic vibration J.aw U = UCOSot, Ire

obtain

( 6 - 1 3 )

I n  gene ra l r t he  cha rge  Q  i n  t he  l e f t - hand  s i de  o f  ( 6 .13 )

isn ' t  known- Nevertheless,  i f  the potent ia ls 6.  are known, the

number of unknowns is equal- to the nunrber of equaLions. In the

case wtren o_ isn't known, for the harmonic time law of the input
: 1

lotential the charge Q is related with ol as

I = j . Q . = Y " E ,  , ( 6 - 1 4 )

where Y- = iy , , t  -  input  e lectr ical  adrni t tance rnatr ix ,  each

component yi,j presenting an admittance between the nodes i and J,
and I -vector of nodal currents- An explicit expression for Y. is

ob ta i ned  by  so l v i ng  s imu l t aneous l y  t he  equa t i ons  (6 .13 ) ,  ( 6 .14 ) :

*'= 
I 

u; k Br dv , If= .e"J e'l ov .

r '  =  |  N 'e-ds + |  l l ' r  dv + |  B ' "="-dv -  |^  BYo-dv,
J  

- s  
J  J  o  J  o

s; Y' v" v'

o' = | tro dS + f B'. ' ,odV zi = - 
[ 

r 'v=os
J l S J E

s: s;

l J l  f  K  r  - v
o l+ l  r r  -s F
;J  Lo o cil l:l[i].1:"-l-. ll [ : ] [ ; ]

."= 
J 

t; k Br dv + p 
J 

p'p ds , zi = - 
f 

r'( eo- a@)ds
v. s; s:

Iii',i: .:::][i] [i]
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An important characteristic of a VC is presented by its

eigenfreguencies and eigenforns at short-circuited (o.=O) and

open (Q =Q) electric terminals (resonances and antiresonances

correspondingly). The characterist.ic equations for obtaining' the

eigenfrequencies and eigenforms are obtained f rom (6-13) as

a) shorL-c i rcui ted electr ic  terminals (o,=0):

Consider longitudinal vibrations of a rod-type VC with the

short-circuited elect.ric terninals (Xa=O). Assuning the harmonic

, ' j t ine law for  the longi tudinal  st ra i r  r .  = eroslnot ,  the re lat ion

o r ( t r )  can  be  p resen ted  as  [ 31  I

o =  Ct ' "  + . - tg t  r  ,
1  L L  L  l l  ^  ' ( 6 . 1 8  )

because of the relation 
"r= J*, . Substituting c.= c.osiltot into

the  re l a t i on  (6 .18 ) ,  we  ob ta i n

\ o .  I  v , l

c-
wbere tg<=?.-= + is ca1led the mechanicaJ. dissipation factor and' M  

^ E '
{ L

f denot.es the phase shift between the stress and strain harmonic

vibrat ion 1aws. The re lat ion (6.19) can be presented as

The equat ion (6.20) presents an el l ip t ical  path on the plane

(.r,or) approximating the real hysteresis J.oop. Considering the

relat ions a.= (a;r*  je; .  ) I "  ,  D"= 1el"+ ;e l"  ) f ,  for  the same vc

i  With f ixed ends ( t .=0),  a p iezoelectr ic  and die lectr ic
^ s

a e-  are int roduced.
^ S ' ,

3 3

Sinilarly the physical sense of the remaining complex components

of  the st i f fness,  p iezoelectr ic  and die lectr ic  tensors can be

explained.

To measure the diss ipat ion factors for  a l . l  the tensor

i6mponents is a very complicated task. However, usually it isn't
:ihecessary to know al.l the tensor components when carrying out an
'ar ia lys is 

of  a speci f ied VC- From the other point  of  v iew,

approximately the same dissipation factor value can be employed

for aJ-J- the components of a tensor. fn the latter case the

re l a t i ons  (6 .17 )  a re  p resen ted  as

. =  =  . t ( 1 + j l * ) ,  .  -  e ( 1 + j n . ) ,  B s  =  o " ( t + j r D )

r" l- ' l r, I I
|  |  : l f  '  (6 'Ts)

-s,, I rt;,1 .,|
Y, = i. 

{ 
,,.. t ,: i -r,.] j

det 
{ 

K + T.s;:T: - .'rvr 
} 

= o :

b) open electr ic  terminals (ar=O):

det 
{ 

K + T s-'rr - -'rrr 
} 

= o

( 6 . 1 6 : 1 )

< 6 . 1 6 . 2 )
( 6 - 2 0 )

At the resonant eigenfrequencies the dynamic admittance of a

vc  i s  i n f i n i t e  ( see  t he  second  t e rm  i n  t he  re l a t i on  (6 -15 ) ) .  A t

the antiresonant frequencies the dynanic admittance is equal to

zero,  i .e. ,  the minimum electr ic  current  f lows through a VC..

Energy dissipation in VC - The phenomena causing energy

dissipation in vc are extremely complex. Energy looses depend

upon a number of factors, such as vibration arnplitude and

freguency, temperature, operating point, electrical and magnetic

fields etc. As a rule, account for the above mentioned factors is

taken approximately by introducing corresponding terms into

equat ions of  moLion.

Energy 1ooses during a vibration of a VC are assumed to be

caused by mechanic, piezoelectric and dielectric pheno4rena

[146 ,100 ,140 ] .  Each  k i nd  o f  t he  l ooses  i s  supposed  t o  be  due  t o  a

hys te res i s  l oop  i n  t he  re l a t i ons  a (e ) ,  o ( I ) ,  D ( I ) .  r n  o rde r  t o

take account for  them, the st i f fness 
" t ,  

p iezoelectr ic  e.  and

dielectric a= tensors are presented as complex quantities

. " = . t ' +  j c E  ,  e  = e . *  j e . .  ,  B " = a t ' +  j a "

e
dissipat ion factors r l -  = ?t  and 4-  =' P  ' D

c
3 1

1 5 0

( 6 - 1 7 )

1 s 1

( 6 . 2 1 )



The dissipation factors can be assumed to be dependent upon

a  v i b ra t i on  f r equency  va lue  as  n * (o ) ,  n " (o ) ,  no (o ) .

By employing the conrplex values of .t, e, gs we assume that

dynamic analysis is carried out in a freguency domain. In order

to carry out the transient analysis it appears preferable to

consider st ructural  equat l -ons of  motLon (6.12) of  a VC, and to

employ the expl ic i t  expressions of  the re lat ions o(el ,  o(E1,.  D(E)

in the form (6.20) instead of  the complex tensors (6.21 ) .

However, in such a case we obtain a nonlinear problern requ.iring

considerably greater amounts of a computational resource.

Naturally, a compromise between accuracy and computational

efficiency is preferable. In order to obtain a linear equation of

motion, we present dissipation as viscous friction force and

electrical voltage drop across a resistance, and at a harmonic

excitation obtain the folJ.owing equation system in terms of

complex quantities:

Taking account for a slmmetry of the matrix S , the equation

system can be transformed to the real fom

n' ir+po*6'u-s- ' f rro=.

- t n P D

- T r n e r e  r t = o  r -". - 
1+n;

l,r=--'i ' l:";"
J  I + N O

I{,  i i '  
L

M U + C U - R Q + K U -  T Q

z
Z?p-40+4p4p

. 2
t + D' D

(6 .  23  )

l,c=.- ' f r [n**

I  
-=u  U +  K(1+Jn* )  U +  T(1+Ja, )  o  =  I

I  
t ' 1 1 + 1 n , ) U - S ( 1 + i 4 D ) E = Q

l+2nrno- n?,
t 2
t+r ,. D

The matr ix  R in the system (6.23) presents equivalent

rgsistances connected in sequence with the electric terminals of

a vc, and the vector d _ tn" ampritudes of alternating electricar

currents flowing through a vC-

The di f ference between the systems (6-22,  ancl  (6.23) is  that

in (6-22) the diss ipat ion forces don' t  depend expl ic i t ly  uPon a

vibration freguency. Such a dependence can be introduced only by

employing f requency-dependent d iss ipat ion factors a*(^) '  n"(o) ,

ao (o ) .  A t  t he  same  t ime  i n  t he  sys tem (6 .23 )  t he  f o r ces  a re

direct proportional to a frequency value, because the factor o

is obtained as a resul t  of  d i f ferent iat ing in t ime the t ime laws

U and Q . Horeover, the values of resonant frequencies of the

system (6-22,  coincide wi th the resonant f requencies of  the

corresponding conservat ive system (wi thout  d iss ipat ion).  The

nagni tudes of  the resonant f requencies of  bhe system (6 '23) are

obtained less than of a corresponding conservative system, since

1-: they depend upon the diss ipat ion level '

one more possib i l i ty  of  a s impl i f ied presentat ion of

dissipation forces can be obtained by introducing a modal damping

and assuming that damping phenomena are due to only to the

mechanica]. viscous friction forces-

The modes of a VC are obtained by soJ-ving an eigenvalue

p rob lem fo r  a  vc  w i t h  open  e l ec t r i c  t e rm ina l s  ( 6 .15 .2 ) .  We  deno te

the obtained angular eigenfreguencies through oi, 1=T,n I

representing the corresponding eigenvectors as columns of the

ill
na t r i x  a= lo , , a - , .  .  . , 6 ^  |  A  t r ans fe r  t o  moda l  coo rd i na tes  i s

L ^  '  " J

* .M u*  r  I r  *1+2n ,no-n1 l  , , * . f i  [ n -_*  
tn , -n " ]n "n i  

1ut  1.{  J"- '^ ln* '  i * {  J"

i j+a- i f  '#e=r,  <6.22>

f , r  
1+4PnD 

, ,  ,  * f , t  
4 " -Do 

, ,  o - r  1  ^  ,  o -1  
4D 

^  :'  
r * "6  

u+Jr -  
r+4  

u - "  
ta4u* "  f f i u=*  

'

"h " . .  f r  =  K  +  T  S- 'T ' ,  f r  =  T  S- ' .

At the excitation frequency value o

of  (6.22) coincides wi th the solut ion of  the system

a periodic resPonse

1 5 2 I  J J



carried out by substituting U = AZ ,

modal coordinates being obtained as

the dynamic equation rn

I  i  +  d l ag ( ^? )  z  =a ' f r  q+  a ' r , (6 .24 )

Assuming that the dissipation forces caused by different

modal- vibration components are independent, we introduce a

diagonal matrix of modal. damping coefficients dlag(rr.), and add

the term dlAg(p, . ) i  to the lef t -hand s ide of  the equat ion (6.241.

If the Q-factor Q of a vibrating system at the frequency value

o. is known, the values of p. can be obtained from the relation

-!

"q
The danping matrix in nodal coordinates is diagonal, if .tt

can be expressed as CarM+arK , Lrhere o, and o, are the

coefficients obtained at the known values of two e-factors Q and

Q of a VC at two different vibration frequency values o. and o.
J

from the relations

. i . ,  ( . i Q i - . , Q )  . . Q i * i Q ,

t  ( a " _  = r n  n  
'  - ' z  

/  z  2 . ^  ^
'  

r  
o i  / t ' J ,  Q ,  ( o j - o i  ) Q i  l ' J j

6.2 MECHANTCAT CONTACT II{IERACTION MODELS

6.2-I  Vibrodr ives wi th point-contact  interact ion

The s imptest  model  of  a VD is presented in Fig.6-1a- r f  an

elast ic  v ibrat ion is  exci ted in a rod-type VC 1,  i t  begins to

move directively as a rigid body. An average directive tangential

interact ion force is  obtained as a resul t  of  a certa in t ime-Iaw

of the'norma]. interaction force. An oscillating value of the

magni tude of  the normal .  force can be obtainedr€.9.r  by pressingr

with tension the VC 1 to the horizontal plane by means of VC 2.

The varying tension force is obtained creating an inverse

piezoeffect  in VC 2,  i .e. ,  by meErns of  an al ternat ing high

frequency vol tage appl ied to i ts  e lectr ic  terminals,  Fig.5.1b.  In

order to obtain the sufficient normal. force magnitude,

high-frequency alternating voltage source ensuring voltage

Pl tt)

q

Fig.6-1 Construct ion diagrams of  v ibrodr ives:
a,b,c -  I inks of  the s inPlest  model ;' 
cl - vibrodrive with the ring VC;

' ' ' i  e , f  -  t ravel ing wave v ibrodr ives;
g - finite element of a traveling wave vibrodrive
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ampritudes of hundreds of vorts are often necessary. Therefore
resonant vibroimpact motion laws of VC 2 are emploied for
creat ing a vary ing normal  force,  Fig.6.1c.

Sometirses the same VC is employed for obtaining a varying
normal for@6 aa werr ae for creating tangential vibrat.ion of |l
contact zone, as in the case of a VD with a ring-type VC in
Fig.6.1d.  I ts  v ibrat ion is  obtained by a proper d iv is ion of
electric terminals of the vc into erectricalry isolated segiments.

The way the electrode segments are connected into an electric

circuit ensures the most effective excitation of the. thircl

tangentiar vibration mode of the ringr. praces for unidirectional

fixings are selected at the nodes of the tangential vibration

component because a vibrating ring has no nodal points for two
displacement components simultaneously. The contact elernents
ensuring a point-contact interaction between a vc and a rotor are
selected in the v ic in i ty  of  the ant inodes of  the tangent ia l
component.

The equation of motion of a VD with point-contact

interaction with the known potential values on the, ele.ctric
terminals and without regarding heat effects is presented as

M i i + C U + K U = * I q + - r '  ,
P | < d^ N v  _  \ 4 O  t

p i r - n
r T v  -  v  ,

( 6 . 2 s )

where M, K,  C,  T-  st ructural  mass,  st i f fness,  damping and
electromechanical  matr ices of  a VC, U, o,  I  -  nodal  d isplacement,
potential and external force vectors correspondj-ngly-

The equation of motion of an output link in Lhe system
(6 .25 )  i sn ' t  p resen ted  exp l i c i t l y ,  assum ing  i t  be i ng  i nc l uded

into the f i rs t  matr ix  equat ion.  The contact  condi t ion in.  each

contact  pair  of  a VD is def ined as fo l lows:

a)  a contact  eJ-ement can' t  penetrate through a r ig id surface of
an output  1 ink,

b)  i f  a tangent ia l  interact ion force d.oesn' t  exceed i ts  c l i t ical
value, a contact element of a VC and the corresponding point of
an output link move together without sliding.

The constant matrices P*, P, contain the direction cosines

of  a contact  surface.  l lu l t ip ly ing the matr ices by a nodal  d is-

placement vector, normal and tangential displacements of the

coFtact points are obtained. Through do a constant vector

denot ing an in i t ia l  c lear ing (doi>0) or  a prestressed state

(doi<O) in each J-th contact pair Is denoted. The number of rows

-.of the matrices PN, Pr and the length of the vector do is equal

to the number of contact points of a vD- Each pair of rows of the

matrices P*, P, yields a normal and tangential constraint upon

! the displacements of the contact PoinLs. A tangenbial constraint

:.is to be considered only if a corresponding normal constraint is

act ive,  i .e. ,  i f  i t  is  sat is f ied as an equal i ty .  Moreover '  a

..tangential constraint is to be considered only if a corresponding

'  tangent ia l  contact  interact ion force doesn' t  exceed i ts  cr i t ical

J value defined by the Coutonrb friction law (friction coefficient

\ ) -  ot t rerwise a tangent ia l  constra int  isn ' t  taken into account

assuming the tangential- force being equal- to its critical value-

Formally the above considerations can be presented employing

the Lagrange nul t ip l iers (see Chap. 3-6) .  For the analysis of  the

. :obtained equat ions the technigues presented in chap.3.6 are

"applied, or these equations are reduced accordingly with the

teclrn iques of  Chap.1 .2.

6.2.2 v ibrodr ives wi th cont inuous contact  area

Consider a vD as a two-body system A and B interacting by

cont inuous parts of  their  sur faces,  Fi9.6.2.  Assume a r ig id body

B being an output Iink of a VD with one or several motional

d.o. f -  A v ibrat ing elast ic  body A presents an input  l ink of  a vD.

we'1I present a problem formulation taking on account only

smal-J- displacements of an input link. rf the shape of an output

l ink and i ts  constra ints ensure that  the contact  area doesn' t

chdnge in space dur ing a r ig id-body mot ion,  (e-g- ,  a cyl inder

'rotating around its symmetry axis or a rod moving in its

,  
Iongi tudinal  d i rect ion),  the model  in Fig.6.2 can be employed for

'  
f in i te d isplacements of  an output  l ink '  too.

Denote a contact surface through S and assume it being
r-  cor l t inuous.  I f  S consists of  a f in i te number of  cont inuous parts,
' 

the foJ.lowing considerations are valid for each part separately-

The contact  interact ion is  not  necessary in a1I  points of  S

1 5 6
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Fig.6-3 Displacements of  an
internal point of a finite
element of a vibrodrive link
moving as a rigid body

I ink in the

at an arbitrary time instant. Nevertheless, a contact intelaction

is possible at these points as a resulL of small displacements of

the points of an input link- Assume a function d(xry) defining an

initial distance between the contact surface points when no

vibrat ion is  present.  The values of  ld(x,y) l  are of  the same

magni tude order as displacements,  i .e. ,  s igmif icant ly  less than

the s ize of  a f in i te e lement (FE).  The negat ive values of  d(Xry)

denote a prestressed condition.

Consider a nechanical contact interaction between the links

of.a VD- EJ.ectromechanical forces exciting a vibration of an

input link are presented by a nodal force vector -T& , and the

equations of rnotion of a VD are presented as

M U + C U + K U = - T o + I ' +

<6.26)

J r p + c ( v ) - - M "

where Iu - nodal force vector, J - centroidal noment of inertia

of an output link, c(;) - fluid friction force rnomentum, M"

external force momentum applied to an output link, IYL(Ik)

nonentum produced by contact interaction forces.

The third term on the right-hand side of the system (6-26,

signifies that the components of Iu are distributed through its

entire length, according to the numbering of nodes. The second

equat ion of  (6.26) is  presented assuning that  an output  l ink has

on l y  one  mo t i ona l  d -o . f .  r n  t he  case  o f  seve ra l  d . o . f .  t h i s

equation is replaced by the system of equations of motion of a

rigicl body subjected to contact interaction and other external

forces.

Consider the part S of the contact surface corresponding to

the side of the i-th FE. The constraints imposed upon the

displacements of each surface point of a tr'E are

- ( s )  <  d ( s )  ,

u ( s ) - R p = 0 ,
( 6 . ? 7  )

f : l

tf
)

f , jg-6 -2 Surface contact
vibrodrive

Vp

Fig.6.4 Time-Iaw of  the veloci ty  of  an output
step-motion mode { l-" '

L  ' '  ( s )
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where u(s)= l$ l  -  d isplacement vector  of  the surface point  S(X,y)
L ' J

in the directions of the global reference system Ory , and the

unity vectors of the local. reference system at the considered

point are fr.*r, ,r*r. , where Il is norma]- to S. . Denoting through

N ttre form function matrix corresponding to the element side E,
the dynamic equation of the i-th FE with the constraihts; Ls

presented as

M " i j ' +  C t U . +  6 i g i _  _ 1 i 5 i , u  5 i \ " d s ,

(6.28',)

each point S of the side S are approxinated through the

values of these forces by employing the functions N as

nodal

,  
^ i=N.nL ,^ ;= \^ ;

- Taking on account that the normal. interaction force \:(s)

canl,t be negative, and the nagnitude of the tangential force
r|(s) can't  exceed i ts cr i t ical value 4\:(s) ,  denote

f  n (s ) ,  fo r  a ] . l  s  ,  where  \ : (s )  >  0 ,
n ( s )  =  {

L0 ,  o therw ise  i

[ . ( s ) , f o r  a1 ] -  s ,  whe re  x i ( s )>0  and  l x "  ( s )  l <q \ : ( s )z ( s )  =  {
L0 , otherwise I

n ' ( s ) N U ' = d ( s ) ,  
"

. t 1 s 1  N . u t  -  R , r  = . t q s ;  N .  ( s ) u ;  -  R  v o ( s )  ,

l N  T

J .
s .

- f m l n \ i d s -
J T N

!

. l  , r+c ( ,2 ) - -M"+R t f  i .
t  L 3

l - - r  r .  - -  -  - - i  I
l N , n ' ( s ) N d s U ' =  |
J " " J
s s

r  t  r  - -  ,  r  --  R y  I  N : d s  =  |  N l . ' ( s ) N , 4 ( s ) d s  - R l  N :
J  "  J  r  ! c  J  .
s .  s .  s

! t

^ ; * ]

( 6 . 2 8 , 3 )

( 6 . 2 8 . 4 )

where the index 1 signifies that the matrices and vectors are

reJ-ated to the i-th FE, the constraints (third and fourth

relat ion of  (6.28))  are to be sat is f ied at  each point  S of  the

sideS .  The noda]-  d isplacement vector  Ui(s)  def in ing the

displacement values at an instant when the contacting points

begin to move together without sliding is in genera). different

for each surface point S , because the sliding conditions are.not

the same at each point of the element side.

ff instead of requiring to satiSfy the constraints at each

point of Ern element side we require only to satisfy the

projections of these constraints to upon the subspace 9t the

funct ions \  ,  t f r "  constra ints of  (6.28) are presented as

n los ,  ( 6 .28 .3 ) '

' ( s ) N  d s  u ' '/o ds ,

- i  f - - r .  l i  f  - ^ -  ,  f
P ' =  |  N : n ' ( s ) N  d s  ;  P : =  |  N f n ' ( s ) N . d s  ;  P l =  |  N i r ' ( s ) N  d sI ' L . f J " !

= i  = i  = i

Taking on account the above notat ions,  the system (6-28) for

a sl-ng1e FE is presented as

n ( s )  f o r  a r r  s ,  w h e l e  x : ( s ) > 0  a n d l x " ( s ) l < k r ^ : ( s )  ,
(no sl idingl ,

n ( s ) + k r r ( s ) s i € n l ; ( s )  f o r  a l l  S , w h e r e  x : ( s ) > O  u

|  \ ;  ( s )  l > k f ^ : ( s )  ,  ( s l i d i n s )  ,

0 , othendise i

n ( s )  =

I nrr-
J  " t '
= i

< 6 . ? 8 . 4 ) ' ,

the normal and tangential forces \' \"The values of a t

1 6 1



Mt l i t+  c 'u t+  K i l l=  -T io i+  I ' '

J Y + c ( Y ) = - M . + R

-  f , i r ^ i* t ' - t

(6.29 '

similar to the point-contact interaction case.

Having obtained such equat ion systems as (6.29) for  a l l  ' ' the

FE of the contact surface, a global matrices should be assenbled

foltowingr the conmon procedure of the finite element method- The

obtained structural equation system is solved iteratively at each

numerical integration time point, until the actual iontact

interaction and sliding zones are obtained-

5.2-3 Travel l ing wave v ibrodr ives

In continuous contact area vf,t ring-type vC are usually

employed. By means of a multi-phase excitation law a hngh-

frequency vibration initating irn elastic displacement wave

travelling along a circumference of a ring can be obtained. As a

resu1t of an interaction with an output link and with an external

constraint a rigid-body notion and (or) a motion of Ern output

l i n k  i s  ob ta i ned ,  F i g .6 .1 f .  The  d i v i s i on  o f  t he  e l ec t r i c

terminals shown in Fig.6.1e, f  enables to exci te two nodal

vibrations of a ring simultaneously, the axes of two elliptical

shapes of a standing wave being perpendicular to each other

t116] .  I f  the phase shi f t  between the two v ibrat ion components is
f t

equal to ; , a rotating elliptical shape is obtained, the

rotation angular frequency being half of the vibration angular

f requency.

A mathematical model of a travelling wave vD can be

presented employing the systern (6-28),  consider ing each point  on

the ring circumference as a contact point. However,' "' ' 'Lhe

dimensions of the natrices PN and Pr increase significantlf.

where a functional relation of the displacements from the polar
angrle p is expressed as a superposition of some basic functions

. .G(p).  Employing harmonic funct ions,  G(p) appears as

, 1  .  
_  

f

G.(e)  =  
[ r , , r "cose,  

f , s ine , .  . .  ,  Iacos(h-1  )p ,  Ias ln (h-1  le  I  <e .s r  I

- 
w_lere f" - the unity natrix of the dimension 3X3.

The generalized displacement vector Fl at each point of a
LgJ O

lE consists. f rom tr . i ; , rets of  coef f ic ients at  each basic funct ion

a'rd is presented as f l l '= f l l l '  Bl '  rul ' ' r
[;J^- L GJ., L;J,'... '  [;,J""_,]. rr

- is, expressed through generarized nodar dispracements as

rul '
l y l  =N( r ,z )U  ,
LpJ t

where N(f ,Z)  -  a usual  form funct ion matr ix  of  a FE.
. -- .In general, the relation between the displacements at each

pOiDt of a FE and its generalized nodal displacements appears as
.  I  . .

rur l t*  I
1v f  

=ca (e ) l  l u  -G , ( c )d i agNU^  6 .az )(wJ^ l l ^^LNJ

The structural. equations of motion are assembled employing a
conmon procedure of the finite element method and can be
gresented as

Enproying senianalytic FEU procedures t441, moders of lower
dimension can be obtained- rn this case only a two-dimensionar

area of  the radiar  sect ion of  a r ing is  d iscret ized into FE,

Fig-g. lg-  The dispracemena" 
Fl  of  each FE point  of  th is sect ion

in radial, axial and 
"r.."r.rill"rtiar 

directions are presented as

[I] = .,', H]^ ,

- i:'n:

4 iJ
p."u" = | ll o(")or ,. J

= i

.  ^ .  a
i ' u '  =  F t  I  n l f ' ( s )N u ids

T  t J  I  '  '  !  o
s .

!

"Ndsr i l  ,-  ' )

r --RJN , .w " ( s )ds ,
= i

( 6 . 3 0  )
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m - the number of rows of the matrix PN .

Replacing the requirement of satisfying the constraintt- in
(6.33) for each value of 9 by the requirement of satisfying only
the projections'of these constraints upon the basic function
subspace G_(e), the following constraints are obtained:

( 7 . 3 3 ) '
r d p U ^ = Q

The expressions of the normal

are approximated as

and tangential contact forces

5-3 RIGrD BODY UCTTION ITODELS OF VTBROCONVERTERS

- In general, each link of a VD not only performs elastic

vibrations, but also moves as a rigid body. Therefore sometines

the presentation of a VC dynamics by the matrices M, C and K of a

saalt displacement mdel appears as insufficient, because of

disregarding of finite rotations. A fuII dynamic rnodel is

oitained by deriving the FEIrI relations in a moving reference

s y s t e m ,  F i g . 6 - 3  t 4 0 1 .

Consider a fixed reference system of axes OXY and a moving

reference system ory connected with an elastic body- A position

of_:9ach point of FE in space is determined by the position vector

where Ro- Ircsition vector of the origin of the moving reference

system , no- position vector of a FE point of an undeformed

structure in the movingr reference systen , u - displacement

vector of this point due to structural defornation.

The directions of the axes of the noving reference system

{ilry arentt constant and at each time instant they are determined
.byl.the rotation angle v. According to the Coiiotis Lheorem, a
fuII acceleration of a FE point is expressed as

d= tt
= r {  *  u + o)s,o+ oxu + 2oxu + ox(o:c.o)  + ox(oxs) (6.36)

d. t= 
o

where - - relative acceleration (measured in the moving referrence

system ), and o-lp - anguJ.ar rotation velocity of the body and of
the moving system.

'The 
eguilibriun equations of a moving elastic body are

f 
'li',C U + X U

 A  A

dlagPN U^
- i -

olag.?r u^

= - T o + I
A A  '

< d (6 .33 )

where dia,g P = G- (e )  = r_
l I- 

, 1_cos{2,
..,., :-
"1

l - S m p , . . .  .  I' ' '  
I

f ro I

L',1'

2 f t

r d r a U  s  l G ' r d r p^ J
oI i':'-u'**

I i':'-u'*'

2 6 -  L

lN (P )  =  G - (e )  A *o  ,  r r ( e )  =  G_ (e )  n ,o (6 .34 )

R  =  R o *  o o *  - , ( 6 . 3 5  )

(6 .37 )

In order to obtain time ].aws of a VD motion, numerical

integration techniques for the unilateratly constrained

structures are to be employed (see Chap.3.6) .  Employing the
dynamic reduct ion (see Chap. 1.2) ,  the contact  forces A*,  Ar,
Aro, Ar^ can be expressed as nonlinear functions of the
displacements. The obtained dynanic structural equation with a
nonlinear term can be approached employing the numerical
i n t eg ra t i on  t echn iques  o f  Chap .3 -1 ,  3 .2 ,  3 .3 ,  4 -1  and  ave rag ing
techn iques  o f  Chap .4 .2 ,  4 -3  .

r  _  a  _ d = p  .
lo " 'odv  +  lp6ur -  dV +  lo - r r .  dV =  O
J J d t ' J b -
v v ' w

stra in,  a -  s t ress,  f . -  volune force,  F

.  d ' R
l P  -  d V = F - . . r  '

J  d f .  c x !

d " r d R l
- | ol"*-l dv = rir
d t J  L  d t j  c x ' !

1 6 4

where e -

r 6 5

pr incipal



vector of external forces acting upon an elastic body, , ,$ 
*._

principal external force momentun with respect to the origin of
the system 91ry.

The f i rs t  equat ion of  (6.32) expresses D'Alenberqrs
principle for a systen of naterial points, the second _ angular
nonent'm theorem, and the third - virtual work principle for
internal', external and inertia forces acting upon an elastically
deformed body. In each equation voJ.ume integrals are obtairied --by

integrating through the body vorume v that is assumed to be
constant because of small displacements and strains.

The displacements u of an arbitrary point of a FE can be
expressed through the nodal displacements U as u = NU employing a
form function matrix N, the strains 6 _ through the nodal
displacements as e= BU, and the stresses a _ through the stia:ins
as a= cEs and subst i tut ing into (6.32),  we obtain an equat ion of
motion for a single FE as

where t:.=[3 3], r=J"uo - mass or FE;

":.,=F-l] <,*fru-r,,*F"]*= , ]f - ieet6r
. ;r x )

where l . ,"  [=MX';
L" oJ

-  .T  !  
" ; rT f  

r  r f ruc  1 f- u f c r u + u l Y l _

= X"tMi^X' - moment of inertia of a FE with

respect to the origin of the noving reference system OSi

. U:.=JeHtr'rav=4] 
- mass matrix of a FB;

. r .  - [Bt . tBdV -  st i f fness matr ix  of  a FE;-'.. 
J

the

containing the nodal- point coordinates of a FE,

- r u r

m X ,  n = l p N d V
J
v

" = J ,n'F.]*
lil

lYl =  M ' Y '
t

ir;"+'*fi'"u' , i{ou'F-3]F"].r= ilr"x , q.=J""'fi-f]"uo=-[; ,

"p;i;,q,Lf) 
= rF-|];u; * fr<r*u'rl ;

. .*i,t*,q,4) 
= -2(f+u') '{"i lv ;

r;t*,{,rt) = ,F-l]fru; + fr(x'+u')',,' ;

I t . -  vector  of  external  forces act ing uPon a FE;
a x !

E4* - principal vector of FE nodal forces;

S]*r- principal momentr.rm of FE nodal forces with respect to

origin of the moving reference 
"yJt"t.

A modeJ- presented by the matrix equation (6-38) possesses

excessive d.o-f. because K and M are the matrices of an

unconstrained structure. In order to eliminate the excessive

d.o. f - ,  a set  of  constra ints can be introduced- An al ternat ive

approach for  e l iminat ing these d.o. f .  is  obtained consider ing the

.elastic displacements in modal coordinates. Representing the

eigenfrequency vector as (.1, -t, .?) and an eigenform matrix as

[Ao, Ar,  o.)  ,  we delete f rom considerat ion the zero

eLgenfrequencies oto and the corresponding rigid body eigenforms

Ao. Truncating the dynarnic contributions of higher modes, we

obtain the equation

1 6 6
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The obtained equation presents a fu1J. mathematical model .of

an elastic moving link of a VD- fn many cases there is no need to

take account for aJ-J- the terms appearing in tbe equation-' A

reduct ion of  (6.39) oni t t ing the terms V,,  Yy,  Y" contain ing r /  as

factors is possible due to a negtigibte ragrtitude of the angular

velocity. The terms connecting the elastic and rigid body

diCplacement values ca'l often be omitted, too. In such a case the
b

nass matrix blocks take the form M,.=0, M*.=0, M**=J, t:.=F-l]t.

Ttre equation of notion of each VD link being (6.38) or

(6.39),  the mechanical  contact  between the l inks is  descr ibed by

employing unilateral or bilateral constraints

s  d (y ,U . )  ,

; The stationary motion node is obtained by applying a

beriodic 
excitation law (pulse series or harmonic) to an input

'"-ir*, tn" excitation frequency being in the vicinity of a

mechanical resonance of an input link in order to obtain greater

vibration anPlitudes'

T h e s t e p m o t i o n n o d e i s o b t a i n e d b y a p p l y i n g t o a r r i n p u t

link separate pulses, pulse packages or several periods of a

harmonic excitation law' In the latter case a transient vibration

of YD ]-inks is of prinary importance' It can have have a posiLive

as weII as a negative influence upon the operational

characteristics of a VD'

The quantities evaluating operation parameters of a vD can

be presented by averaged characteristics of notion' the

cohstruction features, maintenance features' etc' Nevertheless'

, - here we Present quantities evaluating the VD on the base of a

mathematical model- TheY are obtained by means of a structural

dynamic equation analYsis of a VD'

" 
,. The dynamic ctraracteristics of a stationary motion mode are

lobtainedt considering the stationary motion J.aw of a model' The

f o r m u l a s a r e p r e s e n t e d f o r t h e p o i n t - c o n t a c t i n t e r a c t i o n c a s e a n d

for a VD with a singrle d.o'f' of an output link' If an output

l ink has more than one d.o ' f ' ,  s in i lar  character is t ics shou].d be

iritainea for each displacement component of the output link' rn

t tlre 
".=" 

of a continuous contact area of a vD' in the following

formulas ttre surface integrals should be employed'

Ttrere are following dynamic characteristics of d Vo in Lhe

stationary motion mode-

1 - Mean velocitY of an outPut link

where y - displacement

vibration period-

of  an outPut l ink ' T - input l ink

M" r V

M
YV

atMt
t )pa

atMt
2 V .

0 0 0

0 dlag(o: ) o

o o oiag{.1, )

r&

{ 
e* <'ztu.

lP , (v )U"

The time laws of a VD motion are obtained by applying to

above equat ions the techniques of  Chap.1-4.

6.4 DYNAMIC CTARACTERISTICS OF VTBRODRIVES

In order evaluate quantitatively the operation of VD,

dynamic characteristics are enployed. The analysis of VD

carried out in two operation modes - a stationary motion and

step motion mode.

T
1 r- l Y o r '
n l
- o

the

is

a

' l 69



of

be

T
r '

A  = l l v t  v d t
n  

J  
k . c

o

llean and root-mean_square

tz 
'1,

- .  
l d t

' , , I

The time interval for measuring a deviation arp can be takenequal to one vibration period. Horrever, it isn,t much sense toemploy such a short time interval because usually AV, is...an
infinitesimal of higher order in comparison with i", and, 1." ".
result, 6,r : 0. As a rule, the tine interval significantlyexceeding the vibration period T is enployed, and the obtaiqgd
deviat ion ay can be caused, €-9- ,  by the i r regir lar i ty  ofgeometric parameters of a VD.

2.  Output  veloci ty  var iat ion.
(rrns) ratios can be enployed:

3. Ittean torque in the case of .rn
ro ta t i ona l  d .o . f .  :

M =
D T

\  - l l r  d r '
l : r  J  

- r i  * "  '
! e

mean force in the case of a linearly moving output tink

5. Anount of work during one vibration period' In the case

of an outPut link with a rotational d'o'f'

In the case of a linearly noving output link in place

r-t

f, -.. and rz the values of I- and of a linear velocity U should
n L .  c ,  - -  -

substltuted.

.., - .6. amount of work A, done by tangential interaction forces

dtrring one vibration Period'

7.  Ef f ic iencY

\ * A r * A " , * { " " , -

where A.r-  e lectr ical  losses -d Ar" . . .  -  thermal .  Iosses'

Tf a mathenatical nodel of a VD is investigated'

*-*l ,;, I

nechanical efficiency value obtained by

nectranical rrork is often employed:

a

(]n.l.l'

A
h

A  + A
"^ -.T

I n t h e s t e p m o t i o n n r o d e t h e f o l l o w i n g c h a r a c t e r i s t i c s a r e

. . eup loyed  (F i g .7 -4 ) :

output ].ink with a A

consideri;:.-r

1 T
f - r f

l iJ ^

q T

N ^ =  )  - l > .-  / - - T J  N i
! o

interaction force between an
force in a contact  zone).

i-th conthit

input and output

contact

where trri- tangential contact force at the
interaction point-

4. llealr normal
l ink (a prestressing

. l f

lrhere IN.- normal contact interaction force at the i_thpoint -

-shere p-* - maximun displacement of an output link; T-o*- motion

tine of an output link in forward direction until the first stop;

P-o* - maximum velocity of an output link in forward direction;

-i_.- 
,a*i.urn verocity of an output link in backward direction

F

caused by transient notions of VD links.
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7. ANAL\€IS AND SV{THESIS OF VIBRODRIVES

fn this chapter the dynanic analysis of vibrodrives (VD) is
carried out enploying the techniques presented in Chap.1-4 and the
mathematical nodels presented in Chap.7.

The free and forced inpact vibration of a rod_type
vibroconverter (vc) is investigated enploying the finite erement
model and phenomenological contact interaction models_ Ttlq
complex friction laws are presented as a superposition of tl"
CouJ-onb, Iinear and cubic components. EmpJ.oying the tine_
averaging and nunerical integration techniques a step rnotiori of
vibration-controlled kinenatic pairs (VCKP), free and forced
motion of VD are investigated enploying the lurnped-mass as .werl]
as finite element mathematical models. An analysis of a VD griqh

an internal impact interaction pair enrploying purely longitudipal
vibration of a vc is carried out. vc shape synthesis probrems are
soJ.ved employing the optimal design techniques-

The techniques presented in Chap.S enabJ.ed to obtain the
optinar control raws and feedback circuit parameters in order to
damp transient vibrations occurring due to the externally excited
stepwise incremenLs of longitudinal elastic deiformation.

The following original resuJ-ts are presented in this chapter:
- the inpact interaction of a discrete mechanicaL systen

approximating the continuous one is shown to be elastic,
i r respect ively of  the rest i tut ion coef f ic ient  va1ues in the
vicinity of the contact point. It is reasonable to employ the
rheoJ.ogical nodel of the dynamic contact interaction, if the
stiffness coefficient of the noder exceeds the static stiffness
of the structure at the contact point J.ess than to one order (10

t ines).  Otherwise the impact  v ibrat ion law doesn' t  depend .upgn
the local contact condition, and it appears preferable _,..!o
represent the problem ernploying unilateral constraints rather

than by means of the suggested nonlinear repulsive contact force.
The numerical examples show, that an extension of a generarjzed.

Newmark's n'mericar integration schene in order to take account
for unilateral constraints retain the asymptotic features of !h"
or ig inal  one.  Analysis of  f ree impact  v ibrat ions carr ied out  on

the reduced dynamic models compared with the results obtained

employing the fulJ. rnodel justify the validity of the dyqamic

reduction approach ' It is based upon the truncation of the

lyrr-i" contributions of higher modes of the linear part'

e-lnultaneoosly 
retaining their quasistatic contributions and the

r ipproxinately evaluated diss ipat ion forces (see Chap'1) ;

- analysis of longitudinal resonant inpacb-vibrations of a

VC 
'' 

employing tine-averaging techniques has shov'n that the

gblution considering two Fourier components tine-averaged

e'qriationstpresent satisfactory results only in the case of a

'€i.i-t""" elastic system' For obtaining reliable results when

donsidering structural nodels, at least four Fourier components

are to be taken on account;

- i t h a s b e e n s h o w n t h a t t h e m o t i o n o f v c K P l i n k s c a n b e
'cbitfolled employing tangential vibrations in the contact zone'

f h e v a l u e s o f t h e n o r m a l c o n t a c t i n t e r a c t i o n f o r c e s a r e o b t ' a i n e d

ensuring the egual slopes of an output Iink velocity pulse' The

amplitude-freguency characteristics (AFCH) of the input link

v i b r a t i o n a n d t h e v e l o c i t y _ f r e q u e n c y c h a r a c t e r i s t i c s o f t h e
. o u t P u t t i n k i n t h e s t a t i o n a r y m o t i o n B o d e h a v e b e e n o b t a i n e d , t h e

.duration of transient vibiation being dependent upon a Q-factor

;value of a vc and upon the mass of an output link;

dtna$ic behavior of the finite elernent model of the VCKP
a oyna$rc pet ldvrur

with the nagnetostrictive input link and two friction contact

points has been investigated- such an vcKP isn't sensitive to the

'nodulation depth of the normal force and to the curve shape of a

' f r i c t i on  
l aw ;

-  invest igat ing the system of  two elast ical ly  connected

masses impacting upon each other under harmonic excitation law

.ai;d'noving upon a rough surface, the directive motion of a sYstem

as of a $thole has been obtained' The direction of notion can be

'fllversed by an appropriate adjustment of the Coulomb friction

] ' ioef f ic ient  va1uel
r" : - employing two-dimensional vibration paths of the contact

'points 
of a VD at stepwise and stationary motion modes the

adptitude-frequency, velocity-fre(Iuency, motional force-output
'veloci ty ,  

nechanical  ef f ic iency re lat ions and the feasib i l i ty

"'dtea of stationary motion laws have been obtained;
' 

- asymmetric vibration cycles in the ring-type vc are

.excited by means of adjusting the geometric pararoeters of a

''biniorfic 
ring in order to obtain multiple eigenfrequencies' The

1 7 2 1 7 3
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Iocations of asynnetrically vibrating points on the circumference

of a ring are preconditioned by an excitation level of the

corresponding nodal vibration.

- asynnetric vibration cycles in rod-type VC are obtained by

means of an optinal shape synthesis techniques in order to

satisfy necessary eigenfrequency and eigenforn relations. The

shape forms for asynmetric vibration cycle concentrators and

vibration cycle transformers have been obtained-

- a vc producing aslmmetric vibration under harmonie

excitation have been obtained by neans of supptying the VC with

an internal impact interaction pair;

- the programned and closed-loop control .Iaws have been

obtained ensuring the damping of transient vibrations occurrLng

due to the externalJ.y excited stepwise increments of a

Iongitudinal elastic deformation of a VC ;
- investigating the nodels of VCKP controlled by a varying

normal force, the complex friction laws ensuring the egual slopes

of an output link velocity pulse have been obtained. rn the case

of a high normal. force nodulation frequency value a stationary

rnotion mode has been obtained, the control of the veJ'ocity and

acceleration values being possible by means of the

width-modulated pulses of the normal. force.

7.,I FREE AND FORCED VIBRATION OF SYSTEMS WITII NOR.IqAL

IIiIIERACTION

The free impact vibration of a cantilever beam VC- Here we

consider finite element nodels of several discretization J-eveJ.s,

r i9.7.1.  I f  the nurnber of  e lenents NIL=1 ,  the nodel  presents a

mass attached to a spring. By increasing the number of elements

the number of d.o.f. increases and a structure approximating the

dynamics of the VC with distributed parameters is obtained.

rn an undeformed state, the constraint coincides with the

right-hand end of the vC. At the initial state the vC is

compressed by the force I., and released at the tine instant t=0-

The tine J.aws of the displacements of the nodel during the free

impact vibration depend upon the discretization level as well as

upon local contact conditions. The computed results are presented

in terms of the following dimensionless quantities: displacenent

nl l  . . .Fn-

u
V
V t r
|  , n

U

kvw
nU

kv
AM
lUnv
0

models of vibroconverters
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_ U
of the right-hand end U.=-l , L.ime t = 

+- , impetus of normal
U o ^ - o

- )
con tac t i n t e rac t i on fo r cesS  =  .  whe re  U  -  i n i t i a l

kouoTo 
' o

displacement of the right-hand end owing to the initial

compression of the VC by the force I^ , To - period of the first.

vibration mode of arl unconstrained VC, ko - longitudinal

st i f fness of  the VC. The rheological  model  of  the contact  pair  is

- 9 . 1

- a

presenLed by a spr ing of  st i f fness k =

element.  C = r ; -  connected in paral le l -
nr

o

Fj-g-7.2 presents the t i roe laws of

1 -

F antl a viscous darnping
Ko

the displacements U and

4 r '  :
- 0 . 8

- l . o

l 0

fi

- 6 )

- 0 . 4

- 0 , 6

- g . B

- t . g

s .  l 5

9 . 2 0

9.30

Time laws of the displacements and of the contact force
inpetus of the right-hand end of the model (absolutelY
r ig id local  contact  condi t io: t )-  

+ - U  a t R r = 0 .  4 - S  a t R f = Q ;

x  -  U  a t  R f = 1 ,  o  -  S  a t  R f = 1 ;

a )NEL=1 ;  b )NEL=z ;  c )NEL=5 ;  d )NEL=10

the inpetus accumulation law of the normal contact forces S for

the values of  the coef f ic ient  of  rest i tut ion \=0 and \=1 at

several values of NEL. at NXL=1 and Nil,=Z the finite element

model of the VC presents one- and two-mass elastic structures

correspondingly. The internal damping is assumed to be very

smal l .  We invest igat .e the inf luence of  the coef f ic ient  of ,

restitution R, upon the dynamic behavior of the structure.

At Rr=Q ghs energy dissipation level is high, and the

accumulated inpetus of the contact forces is significantly lower

than at \=1 - obviously, the energy of the structure isn't

conserved because of the perfect.ly plastic local inpact condition

of the point mass at the right-end of the model- The larger

amounts of mass of the structure is concentrated at the contact

point, the more energy is J'ost at each impact interaction, and

the greater is the rate of the mechanical energy decrease (if

NXL-1 , the energy eguals to zero after the very first impact).

By increasing the number of  e lements,  i .e. ,  by approaching the

distr ibuted parameter model  of  the VC,.  the mot ion law becomes

less and less dependent upon the coefficient of restitution Ra

If  
\>0 ,  each impact  presents a ser ies of  microinpacbs

(quasi-p last ic  impact ,  [122]  ) .  I t  foJ. lows that  in genera]  the

inpact  of  an elast ic  st ructure is  a lways elast ic ,  independent ly

of  the value of  the rest i tut ion coef f ic ient  in the v ic in i ty  of

the contact  area.

The free inpact vibration has been investigated, employing

the  rheo1og i ca l  con tac t  i n t e rac t i on  mode l s ,  F i g .7 .1b .  F i g .7 .3

-0 .2

-9.4

- 0 .
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Fig.7.3 Time J-aws of  the displacements and of  the contact  force
impetus of the right-hand end of the rnodel (J-ocal. cbntact
condi t ion presented by a rheological  modeJ. ,  NEL=5)

+ - U . , o - S  a t E = 6 7 i

x - U , e - S  a t E = 6 . 7 ;

0 - U . , x - S  a t E = 0 . 6 7

. - s . 1 4
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Fig-7.5 Time laws obtained employing different integration step
- 

sj'ze, NEL=10, Post-inPact restitution ratio Rr=O, number

of  integrat ion steps:  a)  800t  b)  30

-Fig.7-6 Tine laws of the displacements and of the contact force
impetus of the right-hand end of the model. Absolutely
rigid local contact condit.ion, number of elements NEL=10:

k100,1

Fig.7.4 Free impact  v ibrat ion character is t ics reJ.ated to tbe

st i f fness coef f ic ient  of  the contact  rheology,  NEL=10:

T - free impact vibration period; E - contact tine

during one vibration period; 5 - contact force impetus

during one vibration Period
+ - u .  '
*-4,
o-q,

D - S -  fu1l  nodel ,  Rr=0 ;

*  -  5 -  reduced mode]. ,  s ingle dynamic d.o. f ;

X -  S -  reduced nodel ,  two dynamic d-o. f

l g

sv .T
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s
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presents the tine J.aws of the displacenents and of the

accumulated normal interaction force inpetus at several value5 of

the rheology stiffness coefficient i - The comparison of the

obtained resul ts wi th those presented in Fig.7.2 impl ies that  by

increasing the rheology stiffness the motion J.aws are approachLng

those obtained in the case of rigid constraints.

In the case of the lower nagnitudes of ; an essential

difference between the motion laws is obvious. The quantitative

evaluation of the free inpact vibration behavior with respect to

the rheology st i f fness coef f ic ient  is  presented in Fig.7.4 by

means of the relationships between the free impact vibration

period T, interaction time during the period T", accunril'a€ed

nornal interaction force inpet.r" J .rra rheology stiffness E . It

should be noted, that the rheology features are of great

s igni f icance in the inpact  v ibrat ion,  i f  0.1<k<10 -  At  the values

k>10 i t  is  reasonable to employ the r ig id constra int  and a

Lagrange multiplier approach for the numerical integration of bhe

egua t i ons  o f  mo t i on  ( - see  Chap .3 .3 ) .  I n  t he  l a t t e r  case  i b  i sn ' t

necessary to know the exact value of the rheoJ-ogy stiffness-

coefficient, because it has no influence upon the lower harmonic

components of the resulting free motion law. On the contrary, if

k<0.1 ,  the impact  v ibrat ion J.aw is very s imi lar  as in the case

of the unconstrained structure.

Enploying the rheological- nodels with the stiffness and

viscous damping elements connected in paratJ.el, theoretically : it

is possible to adjust their values in order to obtain the J-ocal

contact condition corresponding to any value of the restitution

coefficient in the range 0( R, (1 . Nevertheless, in order to

represent the value \  
= 0 ,  the diss ipat ion coef f ic ient  is  to be

increased up to a very large va1ue. I t .  resul ts in '  ppor

convergence when solving the nonlinear algebraic dynfuiric

equilibriun eguation at each tine integration step- On the other

hand, for each particular case of analysis it necessary to adjust

the contact stiffness and damping coefficients individually,

because fron the very nature they are employed in order to obtain

the motion laws adeguate to those taking place in a real system

rather than for representing some physical quantities. Therefore,

Lf it is possible to neglect the ].oca]- elasticity of the contact

'' 
^r"^, it should be done. In this case the problen is to be

' 
represented the dynanic contact problem by the linear structural

equation of motion with unilateral constraints rather by

including directly the nonlinear terms representing the contact
'" 

forces, as it enables to deal with the coefficients of
'' 

restitution simply percepLible for most engineers instead of

:. daptoying sophisticated rheology coefficients.

::,, tet's evaluate the asynptotic features of the generalized

.: llewmarkrs scheme applied to the structural equations of notion

rrith unilateral constraints. It appears reasonable to expect,

that the nurnerricral damping, period elongation and nunerical

,stability features would remain similar as obtained in purely

linear structure analysis.

ReaIIy, the notion law obtained by integrating a constrained

structure is conposed from the motion J.aws produced by an

unconstrained one with boundary conditions varying at the time

1 instants where some constraints change their status becoming

riactive or inactive. This suggtestion is confirned by the motion

. 'J .aw analysis presented in Fig.7.2a,b ,  for  which the exact

. . ;solut ions can be easi ly  obtained- On the Fig.?-2a there is  no

amplitude decay, and the period elongation comprises = 1t at 50
' t ine integrat ion steps dur ing the. t ime interval  [0,ToJ.  ln order

. to illustrate the unconditional numerical stability of the

algorithm, the free impact vibration law was obtained for a

two-element structure (NEL=2) during the t.ine interval i=O-S at

i'Rr=O with the snall step (800 integration points) and with a very

large t ime step (30 integrat ion points) ,  F ig.7-5arb.  No errors

;'6,ie accunulated in the second case, and the contact force impetus

is obtained close to its exact value.

Free inpact vibration analysis employing reduced model with
' the truncated dynanic contributions of higher modes. In f.j-g.7-2
' dl.splacement time laws of the right-hand end and of the

corresponding force inpetus are presented, obtained by

integrating the dynanic eguations of the 10 elenent model at the

.r . inpact  rest i tut ion coef f ic ient  values Rr=O and \=1.  
As was

."nent ioned above,  the value of  the coef f ic ient  of  rest i tut ion

.hasn't a great influence upon the vibro-impact motion Iaw of an

" 
- 'e last ic  st ructure.

1 8 0 1 8 1



Fi9.7-6 presents the notion laws, obtained employing the

reduced models, taking on account the dynamic contribution of the

first node only and of the first and second nodes. It should be

noticed, that the approximation by the reduced rnodel with two

dynarnic d.o.f- presents the impact vibration behavior with the

sufficient accuracy for practical purposes. The time laws Ln

Fig.l-7 enable to analyze the influence of the dissipative

contributions of the higher modes, assuning ze,ro va1ues during

the integration step for the second and thirdl generalized

displacement t ine der ivat ives (re lat ions (1.30) and (1.31).  for

obtaining the normal. contact force) - The discontinuous changes of

the displacements correspond to the inertialess rnotion of the

higher modal  componentsre.g. ,d iscont inui t ies at  the t iure instant

of removing the prestressing force (I=0), and at the tine instant

o f  impac t  ( t =0 .24 ) .  F i g .7 .7d  p resen t s  t he  t ime  l aws  o f  t he  impac t

v ibrat ion dur ing the t ine interval  LfO,St.  The compar ison

between the anplitude fade rates implies, that the dissipation in

the reduced models is higher than in the fuJ"J. ones-

E.-q=!_jgpffl:iU-"Jion of a VC tressejl against a jr.igid_

constraint by longitudinal force . A rod-type VC presented in'

F ig.7-1c is  employed in VD for  creat ing a vary ing normal

interaction force. A VC unsupported rigidly in a frame is

preferah1e in comparison with a cantilever one, because in the

latter case great amounts of vibration energy are transferred.

through the rigid support to the frame. A VC of the length l- is

presented by a finite element nodel. the prestressing force being

Po, and a longitudinal harmonic excitation force is

P-( t )=p-Sin- t .  rhe computed resul ts are presented employing the
l '  t  

,  T T  .  a  1 .-  +  = ;= i , i= i<on ' , ;= : - ,
dimensionless quant i t ies t  = ! ( l /p) ' ,  L

1 1 X l
- P !
P = - , a = aI(p/T)', where X, p are the Young's modu]-us .an'd'

derrsity of material. The dimensionless impetus of normal- contact

- s1
interaction forces is obtained from the relation S = - (e/L.1" .

n'l :
A vibration Q-factor of the VC is assumed to be Q=50.

Fi9.7.8,  7.9 present the t ime 1aws of  the r ight-hand end,

displacements of the VC obtained by means of the direct nurnerical
_ _ 1 ' , f

- 9 . 8

- r . g

fiS.Z..] Time laws of the displacements and of the contact force
impetus of the right-hand end of the nodel (local contact

i : ,  r heo log i ca l  mode l ,  NEL=S ,  k=0 -33 ,  c=0 .8  :

+ - U , t r - 5  - f u l l m o d e r ;
' /  \ ,  , .  ( 3 )

x  -  U ,  X  -  S  -  r e d u c e d  m o d e l ,  t i n e  d e r i v a t i v e s  z  =  z  = . . . = O

t r  ob ta i ned  by  t he  re l a t i on  (1 .4321 ; ,  
, . ,

0 ' ' 'U -  , x  -  5  -  r educed  mode l ,  t ime  de r i va t i ves  z  =z  = . . . =O

' '  ' " : r  x  obtained by the re lat ion (1 .aa);
a)  reduced model ,  s ingle dynamic d.o. f ;  b)  reduced model ,  two
dynam ic  d .o . f ;  c )  r educed  mode l ,  t h ree  dynam ic  d .o . f ;  d )  r educed
node l ,  two  dynam ic  d .o . f ,  t ime  i n t e r va l  t e [Q ,g ]
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Fig.7.8 Transient  impact  v ibrat ion of  a rod-type VC, NEL=1,
F"= {=t  ,  d=1 ,02 (exci tat ion dur ing 90 per iods, '

vibration afterwards ) :
a) direct integration of equations of motion, time laws of the
991!a9t point displacements and normal contact force impetus,
2400 integrat ion points)
b)- numericar integration of time-averaged equations of motion
taking into account two Fourier components, pi2, 75 integration
points, time laws of the contact point vibralion anplitudes and
phases,

6 - p n = . r c t e [ u ' / t : )

free

+  -  u o  ,  x  -  u l =  
[ t u j l ' *  

t u ] 1 " ] :  ,

Fig.?.9 Transient  impact  v ibrat ion of  the rod-type VC, NEL=10'

%= F.=1 ,  o-=1 .02(90 exci tat ion per iods,  f ree v ibrat ion af terwards):

a) direct integration of equations of motion, time laws of the
contact point displacements and normal contact force impetus,
2400 integrat ion points)
b) numerical integration of time-averaged equations of rnotion
taking on account two Fourier conponents, P=2, 75 integration
points, time ^laws of the contact point vibration amplitudes and
ptt.s"s, + - Uo i x - Ut ; 4 - e' i

c)three ro_grilr conponents, p_;3, 75 integration goilts,
+  -  U -  ;  x  -  U -  ;  0  -  U -  i  o  -  P - i  x -  P -  i

d)  four rour ier  conponents,  p--4,  15 integrat ion points,
+ - u '  J * - u ' r  ! - t ' ;  o - u '

"  . ,uu

l . g

l . l

t . 0
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integration of the equations of motion, and the time laws of

Fourier component amplitudes obtained by means of the numerical

integration of time-averaged equations- The excitation frequency

is assr lmed to be resonant,  i .e. ,  o = 1.O2, the number of  e lements

being equal to 1 (two-nass structure, rig.7.8) and equaJ- to

10 (F. ig.7.9) .  In the case of  the two-mass structure the

time-averaging approach enables to obtain satisfactory results

taking on account only two Fourier components (p=Zl. However, it

i s  no t  t he  case  f o r  t he  s t r uc tu re  w i t h  11  d .o . f .  (NEL=10 )  f o r , a

satisfactory representation of a notion law at least four Fourier

components are to be taken on account (p=4),  Fig-7.9a1

The transient motion tine laws in terns of sJ.ow varying

amplitudes have been obtained by employing time-averaging

techniques are presented in Fi9.7.10.  rn E' ig.7-11 the AFCH and

PFCH are presented at several prestressing force Po values- As a

distinctive feature appears a resonant frequency shift to the

right in comparison with the resonant freguency of :rn

unconstrained VC and the different steepness of slopes of the

AFCH. The curves 1 and 4 exhibit the difference obtained in the

case of one-erlenent and ten-elenent structures.

Analysis of vrbratj.orr-ccr.trolled kinematic pair with normal

vibration in the contact zone. Such a VCKP consists of two tinks:

a vC as an input link and a rigid body as an output link

prestressed to each other. A constant noving force applied to the

output link doesnrt exceed the Coulomb friction force and the

links of a VCKP donrt move with respect to each other. The

relative motion begins only when an elastic vibration of an input

link is excited. In various constructions of VCKP normal,

tangent ia l  or  the both k inds of  v ibrat ions can be employed [92] .

fn tr'ig 7.12 a VCKP with a cylind:cical VC and a rotating

output link is presented. In the VC-vibrations of the first mode

are excited, where the vibration nonnal to the contact surface

prevail. The rotational rigid body notion of the VC is prevented

by the vibro-isolating fixing at the upper circumference of 
'the

cyJ- inder.  I f  the st i f fness of  the f ix ing is  considerably lower

than the stiffness of the VC, the influence of the fixing upon

the resonant frequency value and upon the vibration amplitude of

the VC is insignificant. Therefore the problem can be presented

as axisymmetric one employing the eguations of motion

Fig.7.10 Transient impact vibrat ion of the rod-type VC-at several '

, ,  varues ot ; i l :*; ; t i t ; t fJ"-r '"q. '" t 'cv '  NEi=10' Fo= F'=1'

l3tTfi';:il;':3'::::1"?"5i1";3li*:":;3:::i!:: :;:-,
75 integraliStt-poittt", time laws of the contact point

vibration amPlitudes

* - u :  , x - u ' , 4 - G ,  o - u "  i

a )  o = 0 , 9 9 ;  b )  a = l , 0 1  ;  c )  i = 1 ' 0 3  ;  d )  a = 1 ' 0 5

n !  n l

n 2  i i 3

l .
l .

- 6

- 1 .

1 8 6
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Fig.7.11 AFCH and PFCH of  the rod-tyPe vC contact  point ,  Pr=l :

I - unconstrained vibration;

2  -  F o =  1 ,  P = 2 ,  E = 1 0 ,  1 1 E L = 1 0 ;

3  -  
% =  1 , 5  ,  9 = 2 ,  E = 1 0 ,  N E t = 1 0 ;

4  -  F o =  1 ,  P = 2 ,  E = 1 0 ,  H E L = I ;

amplitude Ur ; arnPlitude Uo,

,  ' ' :

t '

where M,C,K -  the structural  natr ices of  the VC, R(t)=p11a11

periodic excitation force caused by an inverse piezoeffect in the

VC, I - constant prestressing force, \ - Lagrange nultiplier

vector accounting for the constraint PU<O. rtre physical sense of

the vector L elements are the normal contact interaction forces

abl.e to acquire onJ.y nonnegative values. J is a principal

rooentum of inertia of the output link, 4 
- Coulomb friction

coefficient, rp - rotation angle of the output link, Mg - constant

external. torgue. The natrix P , defining the constraint system is

where the numbers of  nodes 1 , . . . ,k  correspond to the lower

surface of  the VC, see r ' j -9.7.12.

The el-astic vibration modes of the VC are obtained by soJ.ving

an eigenvalue problen

( K - . " M ) o = o

yielding angular eigenfrequencies o. , 1=T;i and eigenvectors

p resen ted  as  co lu .mns  i n  t he  ma t r i x  4= [6o ,6 r , . . . ,  6 . 1 -  The  e i gen -

frequency value r,ro=0, and 60 is an eigenvector corresponding to

the axial motion of the vC as a rigid body. rn order to present

the probJ-em in modal coordinates, the substitution

{:.

r 0 - 1  0  0  0  0  0  . . . 0  0
l 0  0  o - 1  0  0  0  . . . 0  0
l 0  0  0  0  0 - 1  0  . . . 0  0
I
I
L 0  0  0  0  0  0  0  . . . 0 - 1

I
I

n l
t

I
I
I

- l-  pnase P

U - A L .

Finite element nodel of the vibration controlled 
is emploved'

k i nema t i c  pa i r :
i- ritrit. lrement model of an axisyrrmetric VC,

2- output  l ink,  3-  v ibro- isolat ing f ix ing,

M - csnstant external torque, F- normal force 189
-  

1 8 8
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We present the vector of the sqluares of eigenfrequencies as
l'"?l
f-rf, ""U 

the matrix of eigenvectors as A = I Lr, L" f , grhere
[*rJ
the submatrix A" and the subvecto, .] 

"or."spond 
to the truncated

m o d e s .  A s s u m e A r =  [ 6 o , 6 . J r  a . =  1 6 . r . . . 1 6 ^ J ,  S u = a r d i a g l / _ : ) ,  4 ; t r ,

A = P sr.Pr - Negrecting the dynamic contributions of the modes
6=16zr. . .  r@.16.  and taking account for  their  remaining
quasistatic compliances, we obtain the set of reduced 

"goatiorrsof notion

io+ olp'A-'poozo + 6:pr A-, p6 
^2,= 6: (r_p'A-'psk ) (R( t )+r, ), (7, z. j )

Lr+ z. rcrz,  *  4"r+ 6rprA- rp6ozo + 6rprA-.p6.2.  =

' ' - - 2 1

rt' . 
9.,u

' , '  1 '0,5

0.4

- 0.2

0,92 4 r,04 
_(r)

{t- 
SLs.7.1 3 Dyna-mic characteristics of vCKP:

a- AFcH li-lrt"-g"t"ralized displacement zt;

, 
u- retative contact time during the vibrati"" n::i:i,,i,

1_  uncons t ra i ned  v i b ra t i on ;  2 -  f o=0 -05 ;  r -  z -  t o= i . t ;

' "  - -4[

where \ = A-t (poozo+p6iz.+psk (R(t)+I) )

The  equa t i ons  (7 .2 .1 )  and  (7 -2 -21  p resen t  a  non l i nea r
dynamic behavior of the vc as of the mechanicar system with two
d.o. f -  They are independent f rom the equat ion (7-3-3)  present ing
the dynanics of a rotational motion of the output link. Iiraking the
corresponding notations and assr:ming the harmonic externar
exc i t a t i on  l aw ,  t he  egua t i ons  (7 .2 .1 )  anc l  ( 2 .2 .2 )  appea r  as

|  ; o  *  k o o Z o  +  k o z r =  f o  ,1"
[ 

;. + ZurcnL, * -1,2, + \ozo * R,rz,= p s,.not + r!

where koork.o,k.1 are assumed to be zero at  the t ime instants
when the va]"ues of  \  are negat ive.  Fi9.7- l3a,b present the AI .CH
of the generalized displacement z, and of the rerative contact
time during a vibration p".ioat obtained by employing time_
averaging techniques at the values of the dimensionless

coeff ic ients koo=-k.o=krr=?,  Z-rC.=0r02 ,  I  = 0 and at  several
varues ot fo' The dimensionress quantities are obtained from the
relat ions

Itls':- 
'

( 7 . 3 ) ! 14 .7 ,1 .4  V ib ra t i ng  l i n k
1 - input link

interacting with a nassive output link:

; 2 - o u t p u t l i n k

x

Ftg.?.15 outPut l ink veloci ty
re lat ionsniP against  the

movins t"'::"; i'"tll"Fixtf r ic t ion f ,  
191

Fig.7 . ' . 
:;tffi:t{"R;'="
outPut link

1 9 0

Jri.



Fi9.7.17 Time laws of  establ ishing of  the stat ionary value of ,  the / :
output 1ink velocity

t -  F / N t = 0 ,  2 - 0 - 1 4 3 ,  3 - o - 2 a 6 ,  4 - 0 - 4 2 8 '
5 -  0 . 5 7 1  ,  6 -  0 . 7 1 4 ,  7 -  0 . 8 5 7  ,  g -  1

condition being defined bY

interaction force E l' '

The rotational motion dynamics is investigrated employing the

equat ion (7.2.31 at  an al ready obtained t ine J.aw of  E t r ,  '  A

considerable reduction of the friction force caused by the

vibration exibit the low magrnitudes of e , determining the short

braking time during a vibration period'

7.2 FORCED MOTION OF SYSTEMS WITH NOR![A], AND

TANGEI{IIA TMTERACTION

7.2.1 Kinemat ic pair  mot ion contro l  by the tangent ia l

vibration

Interaction of a vibrating ].ink with a massive moving body .

trr" =il,p-ili-o""n.riical system presenting such an interaction is

presented in Fig.7.14.  Assume the t ine Iaw of  a v ibrat ing body

being harmonic xz=a Cosot - The nassive bcdy 1 moves recti-

linearly under a constant external force I and friction forces in

the interface between the bodies 1 and 2- Assuming the Coulonb

tangential interaction force, the equation of motion is

- Za3f ?uC
, f = -, ZoC = ------: r the contact

p.^ '/T

a positive value of the total normal

n,xr= Nf  s i€n (xz-x,  )  + T .

where I! - mass of the body 1,N - normal- force, f - Cou1omb
a

f r ic t ion coef f ic ient ,  X.=8 cosot  -  not ion law of  the body 2,  x1-

displacement of the body 1.

$le present the eguat ion (7.41 in a d imensionless form

X.=  N f  s i €n  ( cos t  -  I ,  )  +  r '  ,  ( 7 .5 )

k -
' = i , k = = , t = t o ,

|  - l

E
q8
0,6
0l
o?

Tr[r

4

2

n 0.2 0,4 0,5 F/ Nf

Fi9.7.16 Front  and back s1ope durat ic . . l  ; : ,

relationships from the ratio, F/Nf : ! -;

1 - T r F f  ;  z - T " [ i r

( 7  . 4 )

obtained f rom thewhere the dimensionless quantities are

relations

- x
f  -  , . +  -  1
v  -  o u r  t r  =  - r

N

I

F iq .7 .19  E las t i c  v i b ra t i ng  sys tem i n te rac t i ng  w i t h  a
I i nk ;  1  *  i npu t  l i n k ,  2  -  ou tpu t  l i n k

$le ' l I  invest igate the mot ion laws at  h igh v ibrat ion

frequencies o ,  i .e. ,  when the values of  the dimensionless forces

, 2 , 3  , 4  , 5  , 6  , ?

\
\ /

\

1
2/

Psin<,lt

F = conrt

1 9 ?

r ig id outPut
1 9 3

"'rF,Il



are considerably less than unity. Presenting the

as

T.=  eNf  s l€n  (cos t  -  X . )  +  c f '  ,

equa t i on  (7 .5 )

( 7 . 6 )

( 7 .e )

- : N f a r c s t t A . i f

+ i r ,  i r

- 1  s A < 1 ,

A s - 1  ,

velocity pulse are of equal duration, and this duration is as

short  as possib le,  Fig.7.15.  In order to determine the durat ion

of the front slope we employ the time-averaged equation for a

transient motion as

where s - an infinitesimal quantity, we apply the averaging

techniques. lt the first approximation we search the solution as

* r=  I  ,  ( 7 . 7 ' ,

where A is a function slow varying in time. Averaging the

right-hand side of the equation (7.6) during the time intirval

l o ,Zn ) ,  we  ob ta i n

A = - l N f a r c s j n A + f ' ( 7 . 8 ) ' r r

rn order to determine the mean velocity i, or u.r, o,rtprrLtlLi.rL
:

in the continuous motion mode, we assume A=0. The reldtion

between the normal force N, tangential force f and the mean

velocity is obtained as

;
_  = -$a rcs i nn ,
Nf

Integrating the equation (7.10) numerically at a mrmber of

values of  F, /Nf ,  the t ine laws presented in Fi9.7.17 are obtained,

the front slope having a form of aI exponent function. In order

"i: tb determine the duration of the back slope the equation (7.5) is

.... gpnsidered with no vibration of the output link:

Ir= -Nf si€n Il + r'

The velocity of the output link decreases linearly' and the

braking time from stationary velocity value vo is obtained as

A = I

A = I

A = I - N f ' i f  A < - l

( ? .  1  0 )

( 7 . 1 1 )

( 7 , 1 2 )w h e r e  - 1  s  F  1 ,  ( s e e  a l s o  r ' i g . 7 . 1 5 ) .  T h e  r e J . a t i o n  ( 7 . 9 )

corresponds to the resul t  obtained in t551.  From (7 -9)  we

determine the amplitude value of the vibration with the frequency

o in order to ensure a stationary motion of the output link with

the mean veloci ty  A -  At  the same value of  the normal 'and

tangentj-al force ratio, the mean velocity depenils upon [ft.

vibration velocity amplitude ao . A stationary motion with_ the

veloci ty  greater  than ao isn ' t  possib le,  therefore a tangent ia l

f o r ce  l I l > lN f l  shou ldn ' t  be  app l i ed .  Mo reove r ,  a t  such  a

magni tude of  I  the output  l ink can' t  remain in a state of .  i6st

even when no vibration of an input link is excited.

An inportant dynanic characteristic of VCKP is the time

interval fron the beginning of vibration necessary to establish a

stationary velocity value of an output link, and the braking tine

interval  f rom the instant .  when v ibrat ion is  cancel led. ' .Of

interest is the case, where the front and back slopes of the

Ernpl-oying the relationships in Fi9.7.17 for obtaining T, and

r . .  the re lat . ion (7 . ' l2 t  for  obtain ing Tu,  in Fig-  7 -  18 the

.relationships representing the durations of the front and back

^ ' ! lop."  
are presented- The durat ions are egual ,  i f  I /Nf  = 0-65

t'tii;duration 
of each slope reduces, if the nagrritude of the

. 
normal force N is increased. However, siurultaneously increases

the output velocity variation, as can be seen from the time laws

obtained by a nr:merical integration of equations of motion and

. .  p resen ted  i n  F i 9 .7 .19  -

Interaction of resonant vibrating system with massive movingl

body. The model of the VCKp considered above is valid only when

''the input link vibration is ensured with a prescribed amplitude.
'r 'In reality the vibration is usually obtained by emptoying the

v
h o
I .

Nf-I

1 9 4
1 9 5



u1
6 . 6
0 , 5
9 . 1
9 . 3
9 , 2
0 , 1
9 . 0

:
u1
s , 6
9 . 5
9 . 4
9 , 3
9 , 2
s . l
s .s

l r i

elastic resonant vc. The magnitude of their vibration amplitude

at the same excitation level depends upon the contact interaction

forces between the links of vcKP- Moreover, a time interval

necessary for establishing a stationary vibration anplitude

exceeds many tines the vibration period.

The simplest nodel considering an input link as a resonant

v ibrator  is  presented in Fig-7-2O- r t  d i f fers f rom the one

presented in Fi9.7-14 because the input  l ink contains the mass

n - elastic spring and a dissipative element characterized by

the coefficients k and P2 correspondingly. The vibration is

excited by the harmonic forcing law Psinot , the amplitude of the

force being very small and the excitation frequency equal or

close to the resonant frequency of the vibrator- A mechanical

contact between the links and a friction Iaw remain the same as

in the case of  the nodel  in Fi9.7.14.  r f  the contact  interact ion

forces are considerably less than the excitation force amplitude

lN f l << lP l ,  t t r e  node l  i n  F i 9 .7 .14  and  t he  resu l t s  ob ta i ned  above

can be employed- However, in the case of a resonant vibration,

the equations of motion should be considered as

-Nf slgn (X=-x. ) - ?slro: '

t,i= ttt slgn (xz-xr) + r' ,

Employing dinensionless quantities, we obtain

( ? .  1 3  )

:
U .
9 . 7
0 , 6
9 . 5
s , 4
9 . 3
0 . 2
6 , t
0 . 8 mzrz+ tt2rz+ k.X. =

Fig-7-2o Time laws of displacements and vefocities of the vcKplinks obtained by the numerical integration
a )  r i f = 0 - 0 5 ,  F = 0 . 0 2 5 ,  b )  F f = O - 0 2 5 ,  F = 0 . 0 1  2 s ,  c l  N f = o - 0 2 5 , F = o . o 1 6 2 5

:-
9 -  x r  r  D -  x n

I

II,+ F {+ X, = -Nf sign (I.-X.) + F slnot

n T= Nf  s isn (x  -x  )  + t r '
r G '

( 7  . 1 4 >

where

t l

6 = o ( m , / k r i  ; -

_  I_  _  ) r+ r_  !
I  = _ l ,  ,  X = 

p_j (kr /n. ) . ,

- N f
ITf  -  -

r r r r - - H
br

I#^ :' (n - /R^) '  ,
I

n
- 1

u, -fr-
2F' ig-7.21 AFCH of  the input  J- ink v ibrat ion at  several  values of

the normal force:
a)  E=0 (no moving_force) i
b )  F = 0 - 6 5 N f ;  1  -  N f = O ,  2  -  0 . 0 0 1 ,  3  -  0 - 0 0 2 ,  4  -  0 . 0 0 3 ,

5  -  0 . 0 0 4 ,  6  -  0 . 0 0 5 ,  7  -  0 . 0 0 6 ,  I  _  0 . 0 0 7 ,
9 - 0 . 0 0 8 , 1 0 - 0 . 0 0 9

5 /  6 /  7 / g / 9

1 9 6
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Assuming F, ilf, I to U" of infinitesimal magnitudes. the

guant i t ies cF,  cNf,  c t r '  are subst i tuted into the systen (7-1.4)  and

the tirne averaging techniques are employed.

We investigate the motion of the systen in the vicinity of

resonance (6 = 1 ). At the first approximation $re search 
- 

the

so lu t i on  as  I . =  
"  

ao r ( i +p ) ,  i . = -8 .  s f n ( t+ ) ,  I r = -A ,  whe re  8 ,  13 ,  A

are assumed to be functions sJ.ow varying time. 'flle

t ime-averaged eguat ions for  obtain ing a( t ) ,  p( t ) ,  A( t )  are

obtained as

. different values of a, se obtain an AtrlCH' Fanilies of AFCH

obtained at g=u,03 are presented in Fjg'7 '21 ' the mechanical

t'-gri,^"tclt of an input link being egual- to 33'3 ' It should be

loticea that the vibration amplitude increases due to the

djrebtire notion of the output link subjected to the tangential

external force I - Substituting the value a=0 into the sYstem

(7.171, the relation beLween the peak values of the amplitudes

a.Dd the forces f and Nf is obtained explicitlv as

a= + i r .o"1 . r1* r
n l  Lzn rJ

a = -\"ia - -?"l lr l ' ,- r l l i- #"inr(1-;); + Ft ,.  r .  
L  a -J  c

" ; t = - " { c o s t ( t * ) ;  
+ o J ,

i= -3" f r fa rcs in$ * ' r

+ 4(NI)" [1_ 4: l  *  za4r11_ 4: . | . ' *  a.o"- t= s ,
n ' L  r ' J  

" [  
a ' )  4

..[+l
L z N f J

( 7 :  1 s )

r t  fo l logs f rom (?-18) ,  that  the v ibrat ion of

Iink is Possible, if the condition

N f
f t P

( 7  .  1 B )

the input

( 7 . 1 e )

. Stationary motion laws. In order to obtain dynanic

characteristics of the stationary motion node of the VCKP, the

case 8=0,, A=0 is investigated. As the value of the dimensionless

vibration frequency is close to unity, we denote

15  =  q  t  eq t  +  0  =  f  ,  O  =  y  -  o€  . <7.16' ,)

Subs t i t u t i ng  ( 7 - ' 16 )  i n t o  ( 7 -15 ) ,  a f t e r  some  man ipu la t i on  an

algebraic equation system is obtained as

"., [+l
L z N T J

, .deterrnining the maximum value of the normal force' is satisfied'

A t t h e p r e s c r i b e d v a l u e o f t h e a m p l i t u d e a ' t h e m e a n o u t p r r t

veloci ty  value is  obtained f rom the second equat ion of  (7-17)-

Transient  mot ion in VCKP, i .e ' ,  a process of  establ ishinq

of stationary vibration amplitudes and output link velocity

values, can be investigated by soJ-ving time-averaged equations

(7.15),  or  by integrat ing numerical ly  the equat ions of  not ion

(7-14r.  Purther we present the resul ts obtained by numerical

integrat ion.  Fi9-7.22 presents the t ime laws of  the VCKP being

initial.J.y in a state of rest after applying a harmonic excitation

to the input  l ink.  Eig.7-22 presents the t ransient  v ibrat ion law

o f  t he  f r ee  vc  ( i . e . , a t  N f=O ,  F i g .? .22a )  and  t he  t r ans ien t  mo t i on

of  the output  l ink at  several  values of  the mass n-  ( r ig.z.22br-
' i t  

is  necessary to consider the process of  establ ishing of  the

mean value of  the output  ] . ink veloci ty  I r .  r f  f r>1,  the durat ion

of the transient motion of the whole system is prolonged in

conparison with the free vC. At lower values of il the transient

not ion durat ion decreases,  however,  i t  can' t  be shorter  than the
'transient 

vibration of the free VC. on the other hand' the

-2  n2

( ' "
l 4
I{
I A

. :

<7 :17 )

from which amplitude 8 and mean velocity A of the output link

are to be expressed.

Having detennined the values of  a f ron the system (7.1i1 at

r 9 8



u2
g .

0 ,
9 . 2
0 . 4

-9.2
- 0 .
- 6 -

-9 .

0 ,
6 . 1
0 .

Fig.7.23 Time Iaws of the displacements and velocit ies of the
VCKP links during the step-motion urode at
F f = 0 . 0 0 9 ,  F = F t / 2 ,  m = l 0 ,  5  e x c i t a t i o n  p e r i o d s l

1 - U r  , 2 - U 4  ,  3 - U 2

s t a t i o n a r y v a l u e o f t h e v i b r a t i o n a m p l i t u d e i s o b t a i n e d o n l y

after the stationary nean velocity value of the output link is

established '

The above analysis enables to arrive at the following

conclusions:

1 - Increasing a normal force magnitude, the AFCH curve

becomes more sloping. Nevertheless, the stationary input link

vibration amplitude value establishes during the number of

vibration periods approximately egual to the Q-factor of a vc

irrespectively of the normal force magnitude'

2- The transient motion duration in a VCKP is determined by

the durat ion of  establ ishing the mean veloci ty  of  an output  l ink,

however,  i t  can' t  be shorter  than the t ransient  v ibrat ion of  the

free vC.

Step-motion mode. A VCKP can be effectively used for

obtain ing precise smal l  d isplacements of  an output  l ink,  referred

to as steps. During one step the input link performs one or

several vibrational movements during which neither the vibration

amptitude nor the output link velocity are established to their

stationary values- After that the excitation is removed and the

both l-inks of a VCKP Perform sone transient motion until they

come to a state of rest. As dynamic characteristics of such a

mot ion the quant i t ies T-o*,  v- .* ,  t -* ,  Yr ,  ; ,  in t roduced in

Chap.6-4 are emp1oyed. Fi9.7.23 presents the t ime J-aws of  the

output link step subjected to five external harmonic excitation

waves of  the resonant f requency o = 1 ,  the retat ion I=F being

held. Keeping the constant ratio between the forces I and Nf, the

relat ionships in Fig.7.24 present the dynamic character is t ics of

the step motion mode related to the magnitude of the normal- force

Nf.  r t  appears reasonable to consider the_ value Nf=0'009 as

opt imal ,  because by the fur ther increase of  Nf  the step magni tude

lPndx decreases quickly, and, moreover' at the point the quantity

Po acguires its local minimurn.

Fin i te e lement analysis of  VCKP. Consider a VCKP as a magne-

' tostr ic t ive vc at tached to a ferromagnet ic p lane,  Fi -g.7-25.  rn

the longi tudinal  d i rect ion force I  is  appl ied to the vc.  The

winding is  connected to a h igh-f requency vol tage source Vr,

u 2
9 . 4 .

u1
s ,  l 6
o .  t 4
g . t 2
g .  ta
s . a 8
o . g 6
g , g 1
0 . 0 2
0 . o o

o .
g .

- b -

g .

0 .
g .

-4.
-o.
-9.

Fig.7.22 Transient vibrat ion of the input l ink and the
of  the  

" r r tp t l - i i " r .  
a t  F= 0 '03-  ,  6=1 |  F=o '65Nf

" l  
X r = f = o  ,  l l  n r = o . o o 9  ,  c )  N f = o - o o 9

- b . 1

-9 .

v 2
:
u 1

9 . 1

b . J

0 . 2
g , l

g - g

velocitY

4 . 4

:
u 1

a . o t 4
g . s 1 2
g . o t g
g . g 0 B
g . a s 6
0 . 4 6 4
4 , 6 0 2
g . o g g
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l,o

0,6

0,2
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l l r l r r l c

-  |  " ^  |  2
r . _ -  |  1 5 _  ,

"  l - - 3 + 2 h l  2 u
L J . ) o

creating in the winding the electric current I(t;=1.1 I.slnot

The constant component I" creates the normal force attracting the

VC to the surface, and the alternating conponent forces the VC to

perform longitudinal vibrations and simultaneously ensures a

varying normal force nagnitude- If the alternating component

Io=0, the nagmitude of the force I is assumed to be insufficient

to overcone the static friction force. rf I4e.0' the vC begins to

slide in the direction of the force I because of the vibrations

in the contact zone-

If the operating point of the VCKP is selected on the

Iinear part of the nagnetization curve of the material, the

n6rmal force attracting the VC to the surface is obtained by

solving the magnetic circuit equation and is approximately

obtained as

I . ig.7.24 Relat ionships of  the dynamic character is t ics of  the
step-notion mode from the normal force

Fig.7.25 VCKP with the magnetostr ic t ive VC: construct ion
and finite element model

( 7 . 2 0  )

wtrere p - nagnetic- perbeabillty' Ir - number of .loops of the-

winding, Fo- magmetic constant.

trn order'to obtain the equivalent longitudinal force acting

upon each end of the YC, ire employ the analogy between the

constitutive eguations of piezoelectric and ingnetostrictive

materials t14Ol. Expanding thernodynanic functions of the

magineto-polarized continua in the viciniiy of an operating point

Bo rHo,ilo, four pairs of the isothernal magrretostrictive equations

are obtained, one of which reads as

l o - C * " - € r H
I

f  
r = r ; ' e l e  +u€H  '

< 7  . 2 1 )

where B - magnetic induction, H - magnetic field strength, It

nagnetization, CH - stiffness tensor under constant magnetic

field strength, *" - magnetic susceptibility tensor under

constant strain, €* - magnetostrictive tensor. It is preferable

in the equation (7 -211 to employ magnetic induction B in place of
nagnetization tt . Substituting x = rrltB -H into the system
(7 .211  r  we  ob ta i n

202
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r'
I

| 
. = Ctr - €*H

. l  -  <8.?2,
f. 

e = er€ + ltopcH

where p = 1+* - nagnetic perneability of the material. The

matrix equation of motion of the VCKP is

f r r . i * ru ' l  I  P  I  Ip ' l
Mii+cu+KU=-1"  : ' l * l , '  l . l ,  |  <7.2s,

t t t t t l

F*f sisnu^J L t-t,J L-t J
The natrices M'C,K are obtained employing the relations of

Chap .6 .1 ,  exp l i c i t l y  p resen tec t  i n  [ 7 ' l ] ,  and  t he  f o r ces  P . ,  P

caused by the constant and alternative components of the magnetic

field strenSth H" and Ho, are expressed as

: . i i

un
0.30
9.25
0 . 2 0
g .  l 5
g .  L 0
s .05
0 . g g

:
l l

8 . S $
9.915
9.545
s . 0 3 5
s.gtg
a . g E
s . t a
s . 0 1 5
g.9ts
4.985
o . w

The force P. can be neglected because it creates on1y a very
1

sma1l value of the longitudinal defornation-

For presenting the results ire empJ.oy the

dimensionless guantities

following

t

t (R /n ) '  ,  i

i  4 c : _ b h  1  ,
w h e r e m = * p b h f , k =  

' 1  
, u = { " b h l ,  e  a n d  D  -  d e n s i t y

and clampin! factor of the VP.

The character is t ics of  a s ingle step mot ion caused by a s ine

wave package excitation depend upon the normal force I*, r4oviqg

force I and excitation frequency 6. rt has been obtained that the

0

FJ-g.7.27 Fami ly of .  f r ic t ion law

( I3U -FUr
1 +7 |  1 -ae -be I  s ignU

L J
1  -  T  =  O ,  2  -  /  =  2 O ,  3  -  y

2 0 5

r.i9.7.26 Time layrs of the displacements arnd velocities of the
r ight-hand end of  the vc at  F*kr=0.019,  F=F*kr/2,  6=1 :

a)  1 e lement,  b)  10 elements,  c)  20 elements ;

- U
N

-
N f

, x - u* e 0 - li 
(arerage rigid body velocity)

P = H S e  P = H S e
L c L V a L ' e 1 M l l

nf nI

< 7 . ? 4 )

( 7 . 2 5 )  -

:
U n

b. u55
g . g 3 g

9.s25
9.026
0,0 ts
9 .0 t0
6.005
9,9?X

where H =
c 7ZF----T-

L-{ . tJ'"
I r -

I _

P

l l t
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Fig-7-28 Rerat ionships of  the dynamic character is t ics of  the vcKp
against the normal force modulation depth a at f=40 (a)
and against the coefficient 7 at q=0 (L) at
F . k r = 0 . 9 1 9 ,  F = r , o k r / 2
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opt inal  values are 6=1, I r f=0,019 ,  T=T*1/Z.  y"y.g-7-26 presents

the tine laws of the displacement and velocity of the right.-hand

end of the VC caused by five excitation waves P=pS1-Jltot at severa].

different nunbers of flnite elements. It should be noted that the

aimplest  nodel  ( two d.o. f . )  presents only a very rough

approxination in comparison with larger structural models.

The relationships in Fig.7-26 are obtained assurning the

nornal- force magnitude being not modulated, ( I-*=COnSt ), and

the friction forces being governed by the Coulonb friction Iaw.

Closer to reality are the friction laws including the Coulonb,

. linear and cubic components- In the following rre use the friction

Law fani ly  presented in Fi9.7.27 and expressed by the re lat ion

, ( ) ' '  4= -o*" r*<p,u l -n ; [ r - r "F lP 'u l -b  
- / t lP 'u l ] rs1gr(p, i l ) ,  

(7 .26)

where a+b=1.

It has been obtained that the dynamic characteristics of the

\rcKP depend very slightly upon a modulation depth of the normal

force, and upon a shape of the friction law relationship- The

nodulation depth is expressed by means of the guantity q ,

. expressing the ratio of the modulation anplitude to the mean

value of the nona]- force. The quantity 7 defines the loca]-

extrene values on the friction law curve shape. The corresponding

relat ionships are presented in Fi9.7.28- I t  should be not iced
' that the modulation depth has no influence upon the dynamic

characteristic values. SimiJ-ar is the case with the guantity r up

to the critical point, when, once having started to move, the

VCKP doesn't corne to the state of rest after renoving the

excitation (the notion corresponding to the local extreme zone of

the friction J.aw relationship)

7.2.2 Directive motion of a unidirectional vibration

vibroconverter with an internal impact pair

lltathenatical nrodel. Consider the dynamic behavior of the vD

in Fi9-7.29a- I t  consists of  the piezoelectr ic  VC 1 and the r ig id

ttody of the mass [l , prestressed to each other by means of a



connecting element 3 of the stiffness }{. -d damping c1. During

the vibration of the VC, between its right-hand end and the body

2 the impact interaction takes place. For the mathematical repre-

sentation of the inpact interaction forces a phenomenological- mo-

del is enployed consisting of a spring and a dissipative element

connected in parallel with the coefficients k and c correspon-

dingJ-y. Assume the value of the stiffness coefficient 4 being

considerably less than the longitudinal stiffness of the VC as

weII as the value of the coefficient k- Therefore it appears

reasonable to assume that the influence of the connecting element

upon the impact vibration is exhibited on1y as the action of the

constant prestressing force Io. The body 2 is in nechanical

contact with the rough plane surface, and the tangential

;jj4teraction force is assumed to be the Coulonrlc friction force

6btained from the relation

72

0

r . j g . 7  - 29
Vibroconverter itt'th
a nonlinear interaction
point :  1- input  l ink,
2-output  l ink,
3-connect ing element,
4- impact rheological
model

_1.

where X_ - rectilinear displacement of the body 2 along the axis2

OX, f - Coulomb friction coefficient, and N - magnitude of the

nbrmal force holding down Lhe body 2 to the surface. The input

vo]-tage tPSlnot applied to the electrodes of the VC creates the

equiva1ent J.ongitudinal-Iy acting harmonic excitation forces. The

arrgm1ar excitation frequency o is selected in the vicinity of the

eigenfrequency of the first longitudinal mode of the VC in order

to obtain higher vibration amplitudes. As a result of the impact

vibration of the VC 2, the friction force impetus during one

r,= -fN si€n x2 ,

T
r

v ib ra t ion  per iod  isn ' t  equa l  to  zero ,  i .e . ,  l f .Ot  a  O,
J '

( 7  . 2 7  )

and

- n {

- n  { {

:
^ 2

-o.o 1 s

-0,025

- 0 , 0 5
N f0,6| . lL0,2

l :
x2

0

-0,05

-0J

directive rectilinear notion of the body 2 al.ong the 0{ axis is

obtained, illustrating the principle of a VD employing purely

l6ngitudinal vibration and excited by a monoharmonic external

f o r c i ng  [ 47 ] .

I . - -  
Taking on account that  the values of  the coef f ic ients k and

Cr are comparatively small, we present the eguations of motion of

t he  sys tem i n  F i 9 .7 .29  as

I 12 16 c 0,2 0,6 nt
c d

Fig .7 .30  Mean ve loc i ty  re la t ionsh ips :

a -  1 -  q = . , = 0  . 5  ;  2 -  \ = 0 . g ,  f i . = o . 2  a t  E - = 1 0 0 0 ,  E = 0 .  O r [  ;

b -  1  -  f r f = 0 -  0 4 ;  2  -  X i = o . o r 5 ;  a t  E = 0 . 0 t *  ,  ^ , = * . = o - u  t

c -

d-

F = 1 0 0 0 ,  f r r = f r . = g . 5 ,  N f = g . 0 1 5  ;

1  -  N f = o . o 4 ;  2  -  F r = o . o t s ;  a t f = r o ,  A = o . o r |

20a 209
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[,i,.) ,( 28>
where M, C, K -  st ructural  natr ices of  the f in i te e lement model ,

U - nodal displacement vector, Ir- friction force obtained from

the re lat ion (7.271,  I* -  norma1 interact ion force in the contact

pair  4 expressed as

un>x2 I{ I*=0 ,

U^ being the last element of the vector U, corresponding to -the

displacement of the right-hand end of the finite element model of

the VC.

In order to investigate the behavior of such a system, in

place of  (7.28) we consider two s inpl i f ied no'dels.  The f i rs t  'one

presented in Fig-7-29b ref lects the di rect ive mot ion feature of

the two body system 1 and 2 connected by the spring 3 as of a

whole. An external excitatjon here is applied by meanb of two

harmonic forces. The inpacts take p1ace between the rigid bodies

having the masses I11. and Illrr their displacements being denoted

through Xl and Xz.

The second s i r rp l i f ied model  presented in Eig-7-29c ref lects

the behavior of the vC as of the resonant vibro-impact system.

The di f ference f rom the nodel  in Fig.7.29a is  that  the body 2

here is  f ixed,  and in essence i t  coincides wi th the model  in

Fiq.7. lc .  I t  seems worth to noLice that  the inpact  v ibrat ion i 'aws

o f  t he  sys tems  p resen ted  i n  F i g .7 .29 (a )  and  ( c )  d i f f e r  ve r y

sl ight ly  because the veloci ty  of  the t ranslat ional  mot. ion of  the

system as of  a whole is  considerably less than the v ibrat ional

veloci ty  of  the vC.

Transient motion laws are obtained by integrating numeri'cally

in time the equations of motion of the model presented- in

Ei-g-7.29b f rom zero in i t ia l  values dur ingr the t ime interval
, n

5-10T, where T= ia -  exci tat ion per iod.  Further the analysis is

carr ied out  keeplng constant  the fo l lowing re lat ions:

1 )  or*or= const  ( totar  mass of  the systern)  )

:
?) ^ = (kr /mr+Rr/n.) -  ( resonant f reguency of  the unconstra ined

vibrat ion)
a

r  1 ;
3 )  c .  =  l ( n .+n - ) k - l -  (O - rac to r  o f  t he  sys tem i s  egua l  t o  2 ) ,

1  L ' r  z '  r J

and enploying the dimensionless quantiti"" i = = , N= -JeuarLrL___ __ 
a{ !  ,  _ ( r [ l+n;E )

6 - i l + h - ,  X = f ; ,  c  = * o ,  w h e r e a d e m o t e s  t h e m e a n  p e a k - t o - p e a k
-r--"  ^,  

L

anplitude of the vibration, obtained from the formula

I  =  m  a  x  ( x . - x r )  -  n  i  n  ( x r -X r ) ,  $  -  g rav i t l  cons tan t --  r(u.-xr)k+(u^-x")c ,  i r
- t  = {

*  
L  o ,  o t h e r w i s e t € (  o ,  T )

i

i

t c ( o , T )

I t  fo lJ.ows f rom the re lat ionships presented in Fi9.7.30a,  that

the directive motion of the system is possible in the forward as
; _

welJ- as in the backward direction. The value Nf at the point of

reverse depends upon_the renaining paraneters of the system and

is wi th in the range Nf=0r025 -  0,04 ,  Thus,  a mot ion di rect ion

system can be reversed by adjusting an appropriate va]-ue of the

cr i t ical  f r ic t ion force Nf.

The re lat ionships of  the veloci t ies Ln the torward and

backnard di rect ions (r ig.7.3a!)  point  out  that  the value of  the

inpact pair stiffness coefficient should exceed the stiffness of

the connecting element at least to one order. Increasing the

danpingi  in the impacb pair ,  increases the veloci ty  of  the body 2

(F ig .7 . - l 0c ) .  r n  F i g .7 .30d  t he  re l a t i onsh ips  o f  t he  ve loc i t y  upon

the mass rat io of  impact ing bodies are presented.  The values

, .Nf=0,015 ant l  Nf=0,04 were selected in order to obtain maximum

. velocity values in the forward. and backward directions

correspondingly.  The shapes of  the curves 1 and 2 di f fer  severely

from each other.  The curve 1 (moLion in forward di rect ion) has

the maximu-ur value at 4=0,0 , and the curve 2 (motion in backward

direct ion) presents a nonotonous decreasing re lat ionship.  The

highest  ve1oci t ies in the both di rect iorrs are obtained,  i f
u

\=0 ,6 -0 ,8  ,  t ha t  co r responds  t o  t he  ra t i o  
, 1  

=  1 .5  -  4 .
z

Stat ionary v ibrat ion is  invest igated employing a model  wi th

the f ixed output  l ink,  Fig.7.29b.  The geometr ic  parameters of  the

v C  a r e  l e n g t h  l - = 0 . l m ,  w i d t h  b = 0 . 0 1 n  ,  t h i c k n e s s  h = 0 . 0 0 1 r n  '
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mater ia l  cons tan ts  a l .=O.6x10t t l . ,  p=78OOY r  o" .=8 .46 the
m m

Q-factor  being in the range of  200-2000. The connect ingr e lement

is assumed being perfect ly  e last ic  wi th coef f ic ients \=SOOOOH,
Cr=0, the st i f fness coef f ic ient  of  the inpact  pair  k=100\,  and

the ampl i tude of  the exci t ing al ternat ing vol tage equal  to 30V.

The f i rs t  resonant.  f requency of  the vC is p = 14711H2. At

the impact vibration it increases s1ightly, dependent upon the

prestressing force magnitude Io and upon the value of the

coeff ic ient  k.  The obtained mot ion J-aw is in general

poJ.yhannonic,  i .e. ,  s inul taneously wi th the v ibrat ion component

of the frequency o , the vibration components with the ntultiple

frequencies 2a,  3a etc.  are obtained.  Eigenfrequencies of  the

rod - t ype  vC  a re  mu l t i p l e ,  t oo ,  i . e . ,  . o .=2 .o r ,  - o " * ro .  e t c .

being approximately uruJ.tiple to the excitation frequency. It

appears as the nain reason of  an excessive exci tat ion of  the

higher vibration components disturbing the expected motion law.

Fig.7.31 presents the AFCH of  the r ight-hand end v ibrat ion

obtained employing the harmonic Lralance nethod taking on account

the f i rs t .  s ix  harmonic components.  At  the prestressing force

value To=2 in the ' f requency range 14729-14749H2 stat ionary

wibrat io i i .  Iaws don' t  exist .

in order to reduce the influence of the higher harmonic

components it is necessary to employ the VC having no multiple

eigenfrequencies. The eigenfrequency spectnrn may be adjusted by

means of  the geonretr ic  shape (cross sect ion) opt imizat ion

enploying the opt imal  design techniques [141.

In Fig.7-32 three shapes of  the rod-type VC are presented

with d i f ferent  rat ios of  the three f i rs t  e igenfrequency values.

The AFCH curves for  the vC in Fig.7.32b are presented

i n  F i g . 7 . 3 3 .

7.2-3 Free and forced mot ion of  a v ibrodr ive-

Free motion of a vibrodrive with an elastic rod-type VC and

a r ig id output  l ink is  invest igated by means of  a model  presented

in  F i g .7 ,34 .  I n  t he  i n i t i a l  s t a te  t he  i npu t  l i n k  i s  e l as t i ca l J - y

compressed by longitudinal force I* and is held down to the

surface of the output link by ttre transverse force f'.. At the

Ftg.7-34 Fin i te e lement rnodels of  a v ibrodr ive

Fig.7.35 Time laws of  the displacements and of  the contact  force
impetus of the right-hand end of the vibroconverter
at  the f ree mot ion of  a v ibrodr ive at  Fr ,=0-02S, m=mo,

k " . . \ ,  f = 0 . 5 ;  a )  N E L = 1 ;  b )  N E L = 6 ;

* - i * i x - d r ;  0 - \ ; o -  s " ;  X - S ,

s
'a.si

0 .  t d
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s
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time instant t=0 the force I* is removed, and free vibrations

begin, the right-hand end of a VC interacting with the output

Iink. The output J.ink begins to move Because of normal' and

tangential interaction forces. After some time the vC comes to a

state of  rest ,  and the output  l ink stops- We' I I  invest igate the

dynamic characteristics of the obtained step motion of the output

I i nk .

The dynarnic structural equation the rr'D is

,  ( 7 .29 ' , )

- normar rot"t t = L
"  

I ; '
where T - free longitudinal

modulus of the initial

r ight-hand end.

vibration period of the VC, Uo

compressional displacement of the

.  Fig.7,35a presents the t j -me laws of  the displacements and

interaction force impetus for the simplest one-element model of

the v ibroconverter ,  and for  the s ix e lement model ,  F ig.7.35b at

I  =0,075 ,  By invest igat ing the obtained t ine laws we f ind,  that
v

the integrat ion scheme behaves i tsel f  s table,  regardless of  the

comparat ively large integrat ion step (500 integrat ion steps for

the whole integrat ion t ime).  The re lat ions represent ing dynamic

features of the step motion of the output link are presented i.n

F i g . 7 .  3 6 .

Stationar!. motion .Iaws. The sinplest VD is presernted by a VC

vibrating J.ongitudinalJ.y and interacting at one of its ends with

a rough plane, Fig.'I -34c. The magnitude of the normal- interaction

force is varied with the frequency coinciding with the

Iongitudinal vibration frequency according to the time 1aw

N(t)=(1+si : rot)N .  Employing the resonant v ibrat ion of  the vc

under the exci tat ion force Pr( t )=Prsln- t  ,  there is  a phase shi f t

equal to I b.tr..n the harmonic vibration law of longitudinal- 4

displacements and the normal forcing law. It enables to obtain an

optimal mean interaction force causing the VC to move directively

rgs a r ig id body.  The discont inuous Coulomb fr ic t ion re lat ionship

V"=\N(. t ls ignU can be approximated as W.= ? \N(t)arctg- i f  ,

.w l r e re  U  i s  t he  ve loc i t y  o f  t he  r i gh t -hand  ( i . e . ,  n - t h  ) po in t .  o f

the VC. The dynamic behavior  analysis of  the 10 element st ructure

of .  the vD is carr ied out  by employing the t ime-averaging

techniques taking on account two harmonic components (p=2).

Fi9.7.37 presents the AFCH of  the contact  point_ v ibrat ion ( the

amptitude of the first harmonic component U1 ) at several

- the impetus of normal and

- 5 - 5
^ N ^ Ts"= kJb ' 5'= kF l

tangential interaction forces

- r i n e r = i t

0 t
o l
oJ
:

-T' ')
i x  I-'o"j

0

0l r  u  Ioll,"J =' lfYl
O]L%J

M ol f  t i l
o'"1 L%J

f c
+ l

t 0
L

iK- 
lo

where M,C,K -  st ructural  maLr ices of  the vC Presented by a bean

type FE model, exhibiting }ongitudinal and bending elastic

deformat ion ( two t ranslat ional  and one rotat ional  d-o- f -  at  each

node).  To take account of  a contacL interact ion,  together wi th

the equat ion (7.29) the fo l lowing constra ints are considered :

p  f  U l .  n' x l U o J - " '

w h e r e  p - , =  f  , o o o , . . .  r O O O r r s i l p  - c o s p  O ,  0  I  )N  L - - ; -  n - r  ^  J

P  =  l . , 0 0 0 , . . . , o o o , , - c o s e  - s i n P  o  - 1  I
. L - - ; - , u n - )

The masses of a VC and of an output link are assurned to be

equal ,  I l=Oo r  the bending st i f fness of  a beam k" being

considerably less than the longi tudinal  st i f fness q,

i . e . , k  ( ( \ ,  and  t he  Cou lomb  f r i c t i on  coe f f i c i enL  \=0 'S  .  . Fo r
represent ing the resul ts the fo l lowing dimensionless quant i t ies

wi l l  be employed:

-  the displacements of  the r ight-hand end of  a vc and of  an'

u u u
r . r - N i i - T i i - o .

Or ICPUC I lnK UN= 
D-  t  L r=  

U ruo= u_ '
P P P

-  ru r  ^
l -  |  r r  l = u t

2 1 6 217
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Fig.7.37 AFCH of  the inPut
l ink v ibrat ion:

1 -  N=0 (unconstra ined
v i b r a t i o n ) ; 2 - N = 1 ;
3 - f r = 3 ; 4 - I i = 5 ;
s - F = ? ; 6 - [ i = g

different values of the mean normal force. The resonant freguency

of such a VD is the same as of the free VC at an arbitrary value

of the normal force N, however, vibration amplitudes depend

considera.bly upon the magni tude of  N.  Fig.7.38 presents the

characteristic "noving force - velociLy", where the magnitude of

the moving force is assumed to be equal to the magnitude of the

braking force Po at the constant rigid body notion velocity of

the VC (mean velocity value of the vC is equal to the zero

harmonic component t of the velocity). The nechanical efficiency

of the VD is obtained as

( 7  . 3 0  )

where A - useful work, A *"- work done by excitation forces- The

formula obtained employing the tine-averaged equations reads as

a.Y u
o  (  1 )

p  lT I r  - I r  \' r \ " " ( r l  
" " t . ) /

where Lf , . - zero trarmonic component anplitude of the l-eft-hand
(  t '

end of a vc, U1,r,r4..,- first harrnonic components of the J.eft

and right-hand ends correspondingly.

Another model  of  a vD presented in Fi9.7.34b di f fers f rom

the latter one by the external forcing pattern. In this case

prestressing is ensured by me.ins of the force Ir, and the

equivalent harmonic excitation is applied to the right-hand end

of the VC. The magnitude of the constant braking force Po at the

. constant output link velocity value is considered as a moving

: force of the Vp.

In order to represent the computed results in terms of
I  d imensionless quant i t ies,  the longi tudinal  and t ransversional

. . -st i f fness coef f ic ients of  the vC at  the contact  point  are
'  

. in t roduced (k and \  correspondingly) .  The st i f fness coef f ic ient
' 

in the direction normal to the contact surface is equal to

A

T) = ---tr- t

F ig .7 -36  F ree  s teP -mo t i on
character is t ics of  a VD:
1 - ? - o * , 2 - Y p , 3 - T - o ,

U p

A A

g 0,'18 0,16 0,54

E ig .7 -38  Re la t i onsh ips  mov ing  f o r ce .  -  ou tpu t  l i n k  - ve l oc i t y  '  
'  '

( so l i d  I i ne )  and  t he  mechan i ca l  e f f i c i ency  re l a t i onsh iP9  
Gr . , r '

igainst  the moving force (dashed l ine):

I  - F = 1  ; z  - N = Z ;  3  -  u = r  ;  4  - N = 4  ;  5  - f r = s  I
i  -  N = e ' ; ' t  - - x = t ' ; s  -  x = a  !  s  -  F = s  ;  1 0  -  F = 1 0

Yg

The st i f fness and f lu id f r icLion coef f i -

\cos'e-r-k sin'e
cients of the contact rheology model in the normal and tangential

d i rect ions are denoted through k*,kr ,C*,C, -  Computat ions have

5  , 6  1 1  r b  t 9  , 1 0

2 1 a

2 1 9



been carried out employing the following numerical values :

c ] . = 0 . g t g x 1 g 1 1 ! ,  d " . = 1 1 3 * 1 0 - ' " $ ,  e l n = a ' e s * t o - " f '  k ' r = 0 ' 3 4 '

m

Ru=1 -22x1oaf l  ,  O*=Or=r.zxro" f  r  cr=c '=0 ,  p=5700Y ' 'P =\  
" "

DePendent on the values of the vibration frequency'

prestressing force and some other parameters' the VC of the' Vp

can operate in the in the main vibration mode (singte impact

during the excitation period) as well as employing complex

vibration laws- For evaluating the vibration mode of a VC' the

following quantities are intro'duced:

- - 1
k = \ - l A - A t / A ; k = )  l e - a , l / a i  l
" r  

l J  
|  -  ! '  L -

i = L

k.=t  I  i * - -*- r*- .* ,1
- 1

w h e r e  A = - : )  A .
. - !  i - - ,

" 
- total nurnber of periods during the integration time' L -

nurnber r,f excitation periods necessary for obtainirrg the

stationary vibration J.aw (l

displacement value of the contact point during the i-th period'

a. - minimum displacement value of the contact point during 'the

i-tn period, I*-*i- naxinum value of the normal interaction

force dur ing the i - th Per iod'

umploying these quant i t ies enables to d ist inguish the

parameter ranges deternining the stabiliLy and existence 
1"^:i"'

of the main vibration mode of a VC, reguiring these values iilinain

l ess  t han  some  cons tan t  va l ue ,  e ' 9 ' ,  ko , k - ' k r<O '1  '

AIJ. the relationships presented below have been obtained in

the main vibration mode region of the VD' employing the following

- r -P^ "
dimensionless quantit ies: f.. = r+ cosP; Po = #t O" = 

",ft. 
t

" 
^." oo - 'i" -o

- = :  ;  
" = 3 ,  

w h e r e " = [ " : - " i ] ; ,  
" " = [ * ] " * t l " ] ; ;  

o o  -  a n g u r a r
*o *o

eigenfrequency of  the unconstra ined VC' 8*o '3to -  lesbnant

vibration amplitudes of the contact point of the unconstrail'd:l VC

(at the frequency value to ) in the normal and tangential

d i rect ions correspondingly,  B*,8,  -  contact  point  v ibrat ion

a-mplitudes at the frequency ol Po- mean moving force.

Fig-7.39 presents the AFCH of  the contact  point  of  the input

link at several prestressing force values assuming the output

I ink being held-up (zero output  I ink ve1oci ty,  
%=Ol-  The

" r3sonant frequency values increase slightly by increasing the
. ' l - ' : t ,  '  ,

, prestressing force f'". The naximurn vLbratl,on amplJ-tude value

_remaining approximately the same, the left-hand slope of the AFCH

crrrve becomes steeper by increasing the values of I - The AFCH ofv
the tangential vibration of the contact point are more

complicat.edrand the positions of their peeks on the frequency

axis don't coincide with the peeks of the nornal. vibration AFCH.

Fig.7-40 presents the existence region of  the main v ibrat ion

mode of the VC in the pJ.ane of parameters excitation freguency

prestressing force (the shaded region corresponds to the values

k^,k ,4>0.1) .  SoJ. id l ines are the J-evel  curves of  the moving

force at the heJ.d-up output link (zero output J-ink velocity). ttre

ma:<imum values of the rnoving force have been obtained at 13<f,_<14
-  . a n d  1 . 0 8 < ;  < 1 - 1

.!. i The nechanical efficiency 4 of the VD is obtained from the

.  re lat ion (7.30).  I ts  value depends on several  parameters,  the
i :veloci ty  of  the output  l ink being among them. fn Fig.7-40 for

each pair  of  values ( f - , ; )  the maximum value of  4 obtainah1e by
i

.,"r:.,t changing the velocity [.o of the output link is considered. The

. dashed line presents the boundary of the region where the

.  _, , .  ggchanical-  ef f ic iency value exceeds 0.5 .  The re lat ionships of
the mechanicar efficiency and the moving force from the output

,  l ink weloci ty are presented in Fig. l .41 by means of  soJ. id and

. . .  dashed l ines correspondingly.  I t  is  worth to not ice that  the
maximum mechanical efficiency is obtained at the verocity values

. 
'Eo 

close to the maximr:m availabre. The maximum output velocities
dre obtained at  comparat ively smal1 prestressing force values

(I"<tO1 and exhibi t  tendency to increase by approaching the
: '3, . .  I lour .dary of  the main v ibrat ion mode existence region.  In Fig.Z.42
l'i :tbe parts of the curves drawn by dashed line don't belong to the
.1 .. hain vibration mode.
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AFCH of the input link contact point vibration at l"."

in norma].  (a)  and tangent ia l  (b)  d i rect ion:

1-  F"=0 (unconstra ined harmonic v ibrat ions);

2 - F  = 3  . 3 7 ;  3 - F  = 6  - 7 3 ;  4 - F  = 1  0 .  1  ;  5 - F  = 1  3  -  s ;  6 - F  = 1  5 . 8
v ' v ' Y v y

n 0 4  1 1  0

F ' i - g -7 .40  Ex i s t ence  a rea
of  the main
v i b ra t i on  mode

Ej-g.7.4 ' l  RelaLionships "moving force-output  l ink veloci ty"  (sol id
I ine) and the mechanical  ef f ic iency re lat ionsbips against
t he  mov ing  f o r ce  (dashed  l i ne )  a t  o=1 .03  and  a=1 -12  :
1 - F r = 3  . 3 7 ;  2 - 8 . = 6 . 7 3 ;  3 - F y = 1 0 . 1  ;  4 - F . = t 3 . 5 ;  5 - F . , = 1 6 - B

Fig.?.42 Exci tat ion f requency-outPut l ink veloci ty  re lat ionships

a t  t he  cons tan t  mov ing  f o r ce  a t  Fo=0 '66 (a )  and  Fo= l  ' 98 (b ) :
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7.3 SYNITHESIS OF ACTIVE LINKS OF VIBRODRIVES

7.3.1 Opt imal  shape synthesis problems

As a rule, vibroconverters (VC) are mechanical vibrating

systems with high values of the mechalical Q-factor, therefore

their stationary as well as the transient motion depends

significantly upon their eigenfrequencies and eigenforms. fn most

cases the relations for the eigenfreguencies and eigenforms can

be written, satisfying of which ensures the necessary dyna.rnic

features of the VC. The VC synLhesis problem can be regarded. as

parameter optimization problen to be solved in order to satisfy

the prescr ibed re lat ions.

The function ninimization can be most effectively carfied

out by employing gradient techniques. Assr:me, that at the first

approximat ion a type of  a VC is known (rod,  p late,  r ing etc.) ,

and only certa in parameters are to be determined, e.9. ,  the cross

section of the rod, variable thickness of the plate, height and

radiuses of the conical VC etc. fn such a case finite element

matr ices of  the vC can be presented as funct ions K(b.) ,  M(b,)  of

the geometric parameters b, of the structure as

o.b. *rb, o o

q  b  + q b  - q  b  0
L  |  2 Z  2  2

q b  + a b  <  b  . . .
z z a a a 3

symmetr .

r b
1 l

1 o  x
T  r " t

r  b + r b' a  
|  2  2

M ( b )  =

symmetr .

n E  ^ l
9  P L ,

w h e r e q =  
t t ,  

{ . =  " ,  c ; r -  Young's modulus, -  mater ia l' 1

dens i t y ,  1

i -r-T (7  . 30  )

."' '.where b-*n- vector of structure parameters, {.+1 - square of the

: i-th angular eigenfrequency' {-- i-th eigenvector, defining the
.-: i-th vibration node with the eigenfrequency o., h - number of the

structural nodes under consideration.

In (7.30) the second equat ion is  the structural  e igenproblern

.r €quation, and the third relation defines the range of admissible
' .  ' f i raneter  values.

to small

fol.].ows

( 7 . 3 1 )

The first variation of the function yo due

variations of the structure parameters is presented as

6y^ = t 
*. 

ov, * t 
6Yc 

68, + 
aYo 

6b. o  
I
.'l.a}, 

" 
l:,u(, 

' db

In general, a penalty function yo minimization

presented as

6y"=  A, 'Brob  ,  6 ( i=  c tob  ,

225

I 
nin ,e" 

[b,r, ,v, ,

l I r<ur-rM(b)
Lb , *=b  sb :  ,

problem is

employ

(7 .s2)

from the

( 7  . 3 4 )

K ( b ) =

In order to express 6f. and 6(. through 6b r w€

the second equat ion of  the system (7.30) and t t re re lat ions

y lKy "=€ i ,  v l t ' t v r= t  '

From the second eguat ion of  the system (7.30) and
re l a t i ons  (7 .32 r ,  ( 7 .33 )  we  ob ta i n

1 o  x  n
z z  z

1
r D +f D ;. t  D ..' z  2  3  

"  
Z  3  ?

that foll.ow immediately fron the properties of eigenvalues and
eigenveci-ors of  symmetr ic  matr ices t26] .  Taking into account the
slmmetry of the matrices K and M, we obtain the following
var iat ional  re]-at ions:

[ "u*  
-  . ,# ]y .6b  +  (K  -  r ,M)6v . -  6 { iMv,=  0  ,

zv lxoy r+y r f f i ou -6 ( i=0 , (7  . 33  )

Zyluoy + vl$r ou = o

J

-  I eng th  o f  t he  i - t h  f i n i t e  e l emen t .
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where A= K *  r iM -  zMy y lK ,  B.=

c,=yl t3* ,,#]r, .
Taking on account (7.34),  the funct ion var iat ion def ined .  by

the  re l a t i on  (7 .31 )  i s  p resen ted  as

6 1 7 o = g o 6 b  ) ( 7 . 3 5 )

is the gradient vectorwhere 4

of the funct ion vo in the space of  the parameters b.

The minimizat ion of  the funct ion Yo is carr ied out

step-by-step employing the re lat ions

b k * t  =  b u  -  a  q  ,  1 < = 0 , i , 2 , . , .  ,  ( ? . 9 6 )

where bl, bk*n - values of the structure' parameters at the

minimizat ion steps k,  k+1 correspondingly (bo- the f i rs t

approximation), a - coefficient determining the descent rate in

the gradient  d i rect ion- The coef f ic ient  a is  selected in order to

obtain a possibly high minimization rate and to avoid an

osci l la t ing behavior-

The inequal i t ies of  the system (7.30) are taken on account

employing the relation

height H and wall thickness h is presented employing the theory

od th in-wal l  shel ls .  The radia l ,  tangent ia l  and axia l  v ibrat ion

modes are possible in such a VC- The resPonse of the Vc subjected

to the harmonic excitation can be presented as a standing wave,

the vibration of each point containing radial, tangential and
' 

axial displacement components. As a rule' the nodal points of

each v ibrat ional  component don' t  coincide.

Further the results of the free and forced vibration
; 'analysis of  the piezoelectr ic  cy l inder are presented.  The

following material constants of the piezoelectric ceramic BaTiQ_

-  , a re  emp loyed :  
" 1 .=U .55x10 -12m2 /N ;  

s : . =2 .61x1  o - t t o . z  /N : ,

s l o=a . s : * t  o - t t ^ ' /N ;  9 . r= -1  3 .3c /mz  ;  k " . =0 -208 ;  p  =5700kg /m3 .

F ig .7 .43  p resen t s  t he  re l a t i onsh ips  o f  t he  f i r s t  f ou r

eigenfrequencies,  corresponding to the modes possessing axia l

"' jynunetry and the three-fold circumferential symetry. At the

height  values less than O.5f  ,  two-dimensional  analysis can be

. carried out in poJ'ar coordinates. Such relationships enable to

obtain the paraneter val-ues ensuring desirable operational
- " f r equency t  @-9 . ,  t o  keep  i t  i n  t he  range  o f  20 -100kHz  (a t  h i ghe r
' frequencies too small vibration amplitudes are obtained, and at

the lower frequencies the acoustic noise is produced. It has been

obtained, that during the vibration corresponding to the third

tangential mode, the tangential component of the standing wave

amplitude approximately three times exceeds the radial component.
I fn the case of the third radial urode the radial component of the

standing wave amplitude approximately three times exceeds the
tangential component. The output. Iink velocity and a torque of a
VD are usually predeterrnined by the tangential vibration

'1;hmpl i tude,  
therefore the th i rd tangent ia l  mode is preferable.

However, often the corresponding eigenfrequencies are too high to
obtain the necessary ampl i tude values ( they exceed Lhe
eigenfrequencies of  the radia l  modes 3 to 4 t imes,  see Fig.7.43),
and in the case of  short  cy l inders H/T<O.S the th i rd radia l  mode

I 'Ls employed by means of  int roducing the metal l ic  layer [71 ] .
At H,/r>0.5 the third tangential mode can be enployed, because

' i ts  
e igenfrequency value reduces s igni f icant ly  when the height  H

: i  increases.  rn F :g-7.44 the forced v ibrat ion ampl ibude
relat ionships of  the middle cross-sect ion points of  the cyl inder

' 'are presented,  corresponding to the l ine where the contact

t 3* (,# - 2M v,vl3fr J t ,

=f faAr.B+13.. l .A
f:. Luy, 

! ! 6{t ') ab

I  bu- '  ,  i r
t -

uf . '= lo , * , i r

l ' ;  '  i r

br *<  b * * t<  b i  ,

b l * ' (  b , *  ,

ol"> n i

(7  . 37  )

I f  the constra int  form is more compl icaLed'  the gradient

project ion technigues are to be emPloyed [ '14] .

Analysis of  the cyl indr ical  input  l ink of  a VD- The, d i rect

method to carry out optirnization and synthesis leads through

obtain ing the re lat ionships between eigenfrequencies,  e igenforns

and the parameters of the vC and selecting appropriate para$eter

va fues  I

The dynanic model  of  the piezoelectr ic  cy l inder of  radius I ,
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Fiq.7.43 Eigenfrequency re lat ionships of  the cyl indr ical  Ve
against  the rat io H/r  at  hr l r=O-21 (a)  ancl  against  hr / r

a t  H / r=2 .46  (b ) :  1 -  f i r s t  ax i a l  mode ,  2 -  t h i r d  r ad ia l
mode, 3 - second axial mode, 4 - third tangential mode

T

n F n

0,25

n

n l
U L

0,05 0;25 h,fr

A1
+ -

+lt>- - v -  - \
n { f

D

2,5 tllr
Fiq.7.44 Forced v ibrat ion arnpl i tude
r e l a t i o n s h i p s  a g a i n s t  H / r  a t  h . / r = 0 . 2 1 ( r  i i " . . .

and  f r om h . / r  a t  H / r=2 .46  (b ) :  l - t h i r d  , . : . . i :

tangential mode; 2-third radial mode;
- radial anplitude component;
- tangent.ial amplitude component

elements of the vD are situated- The excitation frequencies are

ass'med to be equal to the eigenfreguencies of the corresponding

modes.  Frorn the re lat ionships in Fig-7.44a the opt imal  value of

the ratio H/r=l is obtained, enabling the most effective

excitation of the tangential vibration. The optimal condition for

exci t ing radia l  v ibrat ions is  obtained at  H=(1.5 -  2)r ,  therefore

pieferable values l ie in the range H=(1 -  1.5)r-

From the radial and tangential vibration amplitude component

relationships it follows, that the maximun amplitude values are

obtained at  the cyl inder wal l  th ickness values h=O.2f ,  F ig.7-44b.

', In order to select the points on the surface of the VC for

the elements ensuring the mechanical contact between the input

and output 1ink, it is necessary to consider the positions of the

nodal  points of  the radia l .  and tangent ia l  v ibrat ion.  Fig.7.45

presents the standing wave amplitude curve along the

circr.rmference of the short cylinder (H<<f ) .The dashed line

presents the tangential, and the solid line - the radial

amplitude, the circumference of the cylinder being shown unrol_led

into a stra ight  l ine.

The nodes of the radial and tangential waves don't coincide,

being situated with t}.e 1/4 wave length shitt with respect to

each other. Therefore there are no points in a state of rest, and

only unidirectional supports can be apptied in order to ensure
,the vibro-isolation of the VC from the environment. The elastic

supports are also possible, however, they allow the rigid bocly

motion of the VC and are und.esirable when regarding precision of

a vD.

The contact elements are situated in order to obtain their

optinal vibration path. The angle of impact depends. upon the

distance AI of the element. from the radial component node and.
upon the ratio between the maximum amplitudes of the radial and
tangential components- However, these guantities may be different

fue to the contact interaction between the input and output link
of the VD, and a fuII model analysis of the VD should be carried
o'ut in order to obtain the optinal value of Al- .

0,05 0,15 
u ,0,25 

htlr

T
0,25

i - .

0,5

Fig.7.45 Wave-forms of  the forced radia l  and tangent ia l
v ibrat ion,  p laces of  f ix ings and contact  e lements
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/
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7.3.2 Synthesis of  asymmetr ic  cycle v ibroconverters

Exciting asynmetric vibration cycles in VC with the first
eigenfrequency value being connon multiple of other eigen_
frequencies- The eigenfreguencies of arr the rongitudinal
vibration modes of a rod type vc with the constant cross section
have a conrnon nultiple being equal to the first mode
eigenfrequency. By varying the length and the cross section
inertia moment of a bean, it is possible to obtain the first two
f lexural  node eigenfrequencies to sat is fy the re lat ion 2o.=or. .  By
varying the cross section inertia moment and the radius oJ a
ring, sinilar relations can be obtained for ring-type VC.

For obtaining asynrmetric vibration cycles at certain point

of  a VC, the eigenform values at  these points must sat is fy
prescr ibed re lat ions- E.g. ,  the Four ier  ser ies expansion of  the
triangular pulse seguence of the height a reads as

f ( t )  = , e {  s i n  t *  i  s l n 2 . t +  i  s i : A o t + . . . )

fn order to obtain the vibration law of a certain VC point

approximatinq the triang'lar pulse sequence, harmonic component
ampl i tudes of  th is point  shouJ.d be equal  to ,Q, *  , . , .
correspondingly. It can be carried out by exciting in a VC the
polyharnonic v ibrat ion wi th f requencies orr  Zur, . . .  and to adjust
the forcing anpritudes in order to obtain the necessary vibratl-on
arnpritude values. Having obtained the amplitudes of the harmonic
forcing J-aw components and applying them to a VC simultaneously,

we obtain the ilesirable asymmetric vibration cycres. rn order to
obtain necessary pat terns of  the electr ic  terminals of  a VC, 

t the

techniques presented in Chap.5.3 can be enployed. In the nrost
general  case,  the prescr ibed v ibrat ion cycles can be obt i ined
only at  a s ingle point  of  a VC- However,  in symmetr ic  VC (e.g. ,

ring-type VC) there is a finite numtrer of such points.

Exci t ing asynnetr ic  v ibrat ion cyc1es in r ing-type VC. Ring_

type VC are widely employed as input  l inks of  VD. Howevei , . .  the
asynmetric vibration cycre excitation in such vc meets certain
di f f icul t ies,  because none of  their  e igenfreguencies are cornmon
mult ip les of  the remaining ones.  However,  r ing type VC possessingt

two eigenfrequencies satisfying the relation 2-r=-. can be

employed in order to obtain the vibration law

f ( t ) = f t s i n t t 1 s 1 n 2 o t )

Consider a b imorf ic  r ing VC consist ing of  two r ings:
: external piezoelectric (BaTlOa) of the thickness h. , and

internal metallic (AI) of the thickness h., rigidly connected

" with each other. Electric terninals of the VC being properly
' partitioned, radial (flexural) as weJ'J. as tangential modal

v ibrat ions can be exci ted [3,71 I  .  Eig.7 -46 presents the
'relationships of eigenfrequencies upon the thickness ratio of the

, excernal and internal rings, where I denotes the average radius

of the VC, in this case assuned to be equa]- f=1 thr. Varying the
- , th ickness of  onJ.y the passive (netal t ic)  layer hr ,  the necessary

ratios between certain - pairs of the eigenfrequencies can be
' 

obtained. At the lr^rrr. 1=0.5 we obtain 
-t 

= Z , at 
nt-, 

the
h o h

a __1

value 
j  =2 is  obtained,  etc.
a

I

Consider the asymmetrically vibrating points of the ring
. cireu-mference obtaiaed by apprying a poryharmonic e::cit::tir:ri"

Assume the second and third modes to be excited in the VC by
apply ing the exci tat ion vol tage as shown in Ejg.7- .47,  the VC
para.meters satisfying the relations h =2h= , f=1 9hr- fn n2j it

, IJas been ihown that the relation between the tangent.ial
conponents of the amplitudes at the vibration frequencies o., ,"

a _
is equal a" 

f 
= 

i:a 
. However, the points of a vibrating ring

,..,,.Pltay" move in the radial as well as in the tangential

.d i rect ions,  except the f i rs t ,  purely radia l  node. Consider these

, .  S-o1Fr" . ts  
separately.

Fig-'I -47 presents the tangential components of the second.
and th i rd e igenforms of  the vc (so1id and dashed l ine
correspondingry) ,  the c i rcumference of  the r ing being unrorred
into a stra ight  l ine.  The t r iangles in Fig.7-47 mark the points,
the vibration of which presents a two harmonic component' - 'a 'pproxinat ion 

of  asymmetr ic  cycres.  There are 4 such points a long'-" the 
c i rc 'mference- The v i ,brat ion of  two of  thern approximate'triangnrlar 

puJ.ses with the steep front slope, and the remaining
two - '  t r ia lgular  pulses wi th the steep back s lope.  The posi t ions
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Fig.7.46 Eigenfrequency re lat ionships of  the bimorf ic  cy l indr ical
v C  a t  h n l r = 0 . 0 5 5  ( a )  a n d  a t  h . / r = 0 . ' 1 9 8 ;

_- _ ffi$:1.?s".ft:":f;:#il&1!it,""

Fig.7.47 Wave-forms of  the forced radia l  and tangent ia l  v ibrat ion
at two-harmonic excitation of the second and third

tangent ia l  modes,  
-" f - "  =2;

-  points performing asynmetr ic  v ibrat ion cycles.wi th

the st .eep f ront  s lope,  ampl i tude rat io a.  /u"=2:1 i
- points perfonning asymmetric vibration cycles with

the steep back s lope,  ampl i tude rat io a.  /u"=2r-1

of  such points are determined by the rat io 2:1 or  2:-1 of  the

vibration anplitudes corresponding to the two modes'

It appears worth Lo notice, that the as1'nnetrically

vibrating points on the ring circunference exist at an arbitrary

ratio of the vibration amplitudes of the two modes- The a$plitude

ratio influents only the positions of such points on the ring

6:ircumference, so it is possible to situate such points

synnetricallY around the ring.

The above mentioned consideration remains

radial components of the anplitudes, too-

asymmetrically vibrating points are obtained,

being dependent upon the anplitudes of the two

components.

7.3.3 Synthesis of  concentrators and pulse-t ransformers

Asymmetric vibration cycle concentrators employed for

increasing the vibration amplitude of some points of a VC. In vD

the concentrators of longitudinal and torsional vibrations are

employed for adjusting a VC with J-oad and increasing the output

I i nk  ve loc i t y  [ 56 ] .

UsualJ-y concentrators are characterized by their amplitude

6 t

anpJ-ification coefficient ko = 
+ , where 6l , 6' - amptitudes of

o t

the first eigenform of the VC. Sinilarly the asymrnetric vibration

concentrators transform the asymmetric vibration of the input

point into the same asymmetric vibration with the arnplified

ariiplitucle. In order to do this it is necessary to ensure the same

amplification coefficient value k for several modal components,

f to1
Hz
,t0

5

f t01
H z

i - e . ,  k  =  k ' =  + ,  i = f , n  ,  w h e r e  6 i ,  6 i  -  a n p l i t u d e s

va1id for the

Sirn i lar ly ,  4

their  posi t ions

modal vibration

de f i ned

by the i-th vibrat.ion eigenforrn at the concentraLor's input and

output .  The synthesis problem of  such a concentrator  can be
p resen ted  as  ( 7 .30 ) .  E .g - ,  i n  o rde r  t o  ob ta i n  a  concen t ra to r  f o r

anplifying two harnonic components, the target function vo is
presented as

* = [ - - {"'l'
v a t ,  I

1 .  ) "
, ^  )

. In.
2 3 2 2 3 3

. [--#'']' '



i ts  der ivat ives being

a!)' o

"t,

0 ,  0 r . ' . ,  O ,

0 ,  O , ' . '  ,  0 ,

F+;:l )=f'&[-+:,1,a

J -

I

-  

- , - t
J 2;. ={'#[-1n:]' F*:,1 ]

q ZrI
(^)

,n t '  s in to t  s in to t  \
q=-#(stncot+ -T- + --t-- )
"  

J l  \

L a t . ,  s t n o L . s l n o : t .  \
9 = - s r t s t n o r L -  t -  )

g o / .  ,  s i n 3 r o t  s i n S o t
U: - ; z l s rnoL - l -  *  -25  *

In general. not only a-nplitude, but al-so a pulse shape can

be transformed- Consider several Fourier expansions of pulse

seguences,  Fig-7.48.  For t ransforming the pulses (a)  into the

pulses (b)  (phase shi f t ) ,  the necessary re lat ions for  the

arnptitude amplification coefficients are -il.=t-- =-k" k,

where k - amplitude arnplification coefficient.

Simi lar ly ,  for  t ransforming the pulses (c)  into (d)  the

retat ions 1t '  = - f  = l1f  =. . .= 1g are to be sat is f ied.  The
4 5 2

varying cross-section of the rod-type vc ensuring the pulse

transformation from (a) to (b) with the amp].ification coefficient

]<=-3 was obtained enploying the optinal desigrn techniques.

I.j-9.7.49 presents the shapes of suctr concentrators for the first

two (a) and three (b) Fourier components.

Transformation of the input forcing pulses into asymmetric

pulse vibration- For obtaining the asynmetric pulse vibration of

a VC, together with the prescribed ratios of the eigenfreguency

values the necessary forcing 1aw (in general polyharmonic) is to

be appl ied.  However,  in the most pract ical -  cases i t  appears

preferable to avoj.d the employment of severa.). input excitation

sources of  d i f ferent  f requencies.  Al ternat ively,  the exci tat ion

can be applied as a sequence of shape pulses (symmetric or

asymmetr ic  )  .

Consider a forcing pulse transformation. Taking on account,

that a VC operates in a resonant mode, each sine component of the

input forcing law is transformed into a corresponding cosine

component. If the forcing law is. presented by the Fourier

expansion

+, =,7[ ,-l], avo =_?[ r_L l
dr  .  { n  L  1 ,  )

F ig .7 .48  pu l se  sequenc ies
and their Fourier
expansions

the longi-
b ) k = 3 ,  h = 3

Fig.7.49 Shape-forms of  the rod-type concentrators of
, , , .  i .  .  t ud i na l  asymmet r i c  v i b ra t i ons :  a ) k=3 ,  h=2  ;

Fi9.7.50 Shape-forn of  the rod-type VC convert ing vol tage pulses
into asynmetr ic  cycle v ibrat ion,  . r=263i4-SHz, az-S26O3rIz
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1

1

f ( t ) = a r s g S r t  +  a r c o s Z o t  +  a " c o s 3 o t  +  . . .

the response of the VC is

u . ( t ) =A .s j l o t  +  A . s i l l 2o t  +  A "sh3o t  +  . . .

Assume that  the components of  the forc ing Law &r,&. , , , . ,  as

welJ.  as the components of  the desired response Ar,A", , , ,  are

known- Therefore, as in concentrator synthesis, it is necessary

to obtain a vC possessing the prescribed eigenfrequency ratio

values and satisfying prescribed eigenforn relations.

Transferring the problem into nodal coordinates, the

eguations of motion of the VC read as

i  +  y t z  +  a 2 2  = f  p  
" o " - t ,  

i = f f i  ,  ( 7 . 3 8 )'  ! !  
? : "  

r

where p. . is the j-th harmonic component of the excitinq force

corresponding to the i-th nodal coordinate and is obtain

from the relation

Frr= 6rW a ' ( 7 . 3 9  ) *

where F is a vector with elements egual to O or 'l - The unity

elements def ine the d.o. f .  subjected to an external  forc ing-

E.gr., if the application point of the input puJ.ses corresponds to

the f i rs t  d.o. f .  of  the f in i te e lement modeJ. ,  the vector  reads as

r1 )
l n l

tJ/ = lfil The amplitude if the i-th harmonic component of the
l Y l
t ' l

o u t p u t  d . o . f -  ( e . 9 . ,  n - t h  d . o . f . )  i s  o b t a i n e d  a s

substituted, where V - vector depending upon the pattern of the

electric terminals of a VC employed for exciting the i-th urode.

Consider a longitudinally vibrating rod-type vC transforming

the forc ing pulse sequence presented in Fig.7.48e into as1'mmetr ic

pulse sequence presented in Fig.7.48a- The constra ints for  the

first two eigenvectors of the VC are

nAh o
2 2

:
Assuming the proportional damping C = aM, we obtain hr=hr.

Tf k=1, the target function for the vC synthesis problem is

Presented as

f  . -  \ 2  .  a  ^  \ 2

"^=l lz-z l  
*1""" ' "  -o '' o  

l - .  )  l o . r o . ^  )

If the number of FE equal.s 10, we obtain the profiJ.e of a VC

presented in Fi9.7.50 ( the width of  the vC is assumed to be

cons tan t ) .

The inverse t ransformat ion ( force pulses in Fig.7.48a into

vibrat ion pulses in Fig.Z.48e) is  carr ied out  by the constant

cross section rod, because the constraints for the first two

eigenvectors are

4  
=  6 . . -  6 r . =  0  '  g "  =  6 . n -  6 . .  = o

Polyharmonic VC with nonlinear interaction Pairs.
i rntroducing a nonlinear interaction pair into a vibrating system,

a prescribed polyharmonic response can be obtained aL

nonoharmonic excitation, because the nonlinear interaction force

can be interpreted as a polyharmonic excitation source.

The probJ-em is solved employing the harmonic balance

equat.ions of the finite element mode]. of a VC. The amplitude

...g,-ltarmonic components are assumed to be prescribed, the geometric

characteristics of a VC being considered. as design parameters-

The exact solution of such an inverse problem is hardly possible-

However, assuning the high value of the mechanical Q-factor of

the VC, an approximate synthesis is  carr ied out  as fo l lows.
' 

Assurtre the harmonic component frequencies of a prescribed

motion J.aw being close to the resonant frequencies of the vc.

g , = 6 r , 6 r n -  
" * t t = o  

,  g . = 6 r r 6 . n -
^z

The latter relation imposes the requirement upon

components of the eigenvectors to satisfy the constraints

g . = u : - A i = 0 ,  I - = r f r

I f  a VC is exci ted employing electr ic  vol tage

the above relations in place of olg the tern 6lTV

. a
- - !  -  L  - f , , 1
L l .  =  o .  -  o . w

'  
" ^  1 " , .

(7  . 40 )

the

( 7  . 4 1 )

forc ing,  in

should .be
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Presenting the equations of motion of the system in modal

coordinates of the unconstrained VC and taking on account, that

the overwhelming contribution to the response of the VC is

submitted by the modal components, the resonant frequencies of

which are very close to the excitation frequencies, the

constraints upon eigenfrequencies and eigenvectors can be

obtained.

For the sake of sinplicity we restrict ourselves with the

case,  when a nonl inear interact ion takes place at  a s ingle d.o- f -

of a VC, an external excitation law as well as a nonlinear

function being known in advance. The structural eguation of

motion is presented as

.q|(U. ,U.)  can be presented as a Four ier  ser ies expansion wi th

I kflown coefficients as

+ Bkcos(k -1  )o t

h

s<u ,u )  = \-  Wfsrr( ]<-1 )ot' h '  
h '  

/ -

i = 1

the

( 7  . 4 4 )

{ 7  - 4 5 1

The nonlinear vibration harmonic component frequencies being

close to the resonant frequencies of the unsupported VC, the

-.eguat ion system (7.43) can be approximately presented as

-[o'r' *o \{r'l [.=-.' l+.n [o'r *o w'l
l -  i  .  r n  r J  L  o r J  l L  I  c  t h  c J

( -=- . - t  l *  .=h
L  o 1 J  I

-[o'r *o w'l [.'-.' l*.h [o'F *o v'l
L  1  c  t h  c J L  o l J  l L  1 a  1 n  r J

( - ' - - "  l *  . th
L  o l J  L

- t * t  . l + - h  o  y i
o r  |  !  r n  c

where M, C, K, U - structural matrices and the nodal- displacement

vector, R - constant external force, f'., f'" - vectors of the sine

and cosine ampl i tudes of  the harnonic exci tat ion force,  Y(u. , \ ) -

function detennining a nonlinear interaction force at the n-th

d . o . f .  o f  t h e  V C .

The function Y is assu.med to be known as weII as a source

geometr ic  shape of  the VC and the matr ices M, C, H.  I t  is

necessary to change the geonetric parameters of the VC in order

to ensure the necessary stat ionary response t ime law \( t )  to be

equal  to the desired per iodic response u*( t )  wi th the angular

frequency o .

The harmonic bal.ance equations in modal coordinates of the

Iinear part of the structure read as

i +  nz+  - ' ^  z=  o ln  +  o lR -s in  t  +  o rR-coso t  +  6 l ^w(u . ,u . ) , ( ? .43 )
o ! ! r ! 6 ! c t

i -t---;'
f - r  t r r  ,

where Z. - rnodal displacements of the finite element model of the

VC , related to the displacements U as U=AZ , q.- damping

coeff ic ient  of  the i - th mode, and 6. .  -  n- th component of  the

i- th e igenvector  6 .

The mot ion law U ( t )=U*(t )  being prescr ibed,  the funct ion

M U + C U + K U = R + R sinot + R cos-t +
| .e l
t ' l
t ' t t

|  0 .  I
LV (u^ , u. )J

( 7 . 4 2 )

2 .

z c

-6 v"

r1,.

-  F inalJ-y,  i t  is  necessary to determine the geometr ic

. -parameLers of the VC, possessing the eigenfrequencies oo. and

e igenvec to r s  6 . ,  and  s imu l t aneous l y  sa t i s f y i ng  t he  sys tem (7 .45 ) .

Following the above presented nethod, we synthesize a VC

producing the triangular asymmetric pulse sequence. As the source

model  of  the VC the construct ion presented in Fig-7.29c is

employed, reguiring the right.-hand end of the VC to produce

vibrat ions s imi far  to the t r iangular  pulse seguence. fn th is case

i t  i sn ' t  necessa ry  t o  so l ve  t he  f u I I  egua t i on  sys tem (7 .45 ) ,
' -naking 

use of the circumstance that the appropriate adjustment of

. ,  . . ' ,Lhe f i rs t  two eigenfrequencies turns the corresponding eguat ions
' , ' : t o f  ( 7 .45 )  i n t o  i den t i t i e s .  S imu l t aneous l y  t he  v i b ra t i on  l aw  o f

the right-hand end of the VC presents the sequence of triangular
gr lses approximated by the f i rs t  two Four ier  components.  Fig.7.51

-6 .  $ l i  l - " - - ' l * .h  o  ld t
_  r n  c  (  o l J  L  ! n  .-w

L- 
- totJ* t  t t t

K U :  =  F  +  w '

t  r n t r r  ,
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l l

Fig.7.51 Shape-form of the rod-type VC performing asyrnmetric
vibration cycles during the inpact vibration,z

- . / - L  =3 .g4 ;  f r =14711H2 .  f 2=2922282

a.101
m

50

{  4600 4 4100 E A z

1 4
-14 -s

- 1 8

presents the profile of a Vc' the first two eigenfrequencies

which are equal to tr=14111H2 and fz=29222u2'

In Fig.7.52 the AFCH of  the r ight  hand end of  th is vc is

presented at the excitation voltage ampJ.itude egual. to 30v' The

desired v ibrat ion 1aw is obtained in the shaded area in r ' j -g '7 '52,

the letters denoting the points, for which the vibrational

displacement and nonlinear interaction force time laws are

p resen ted  i n  F i g -7 .53 -

7.4 OPTIMAL CONTROL LAT'VS OF AN OUTPUT LINK

7.4-1 Aper iodic not ion contro l  of  a p iezoelectr ic

vibroconverter

Consider the equations of motion of a VC as

o f

(7  . 46 )

damping,

externa].

po ten t ia l

l
L

I

I

l
Fig.7.53 Time laws of  the displacements of  the r ight-hand end

of the VC and of the normal inpact interaction force
k . = 5 . 1 0 t N / n ,  k = 5 . 1 0 6 U / n ,  c r = c = 0 - ,  Q = 2 O O ,  F o = 1 N  ;

a-  f  = 14737H2; b-  f  = 14687H2; c-  f  = 14656H2i
d -  f  =  14637H2 ;  e -  f  =1  4625H2 ;  f -  f  =  14675H2

K U + t o = R ,

T ' u - s o = Q

w h e r e  K ,  M ,  C ,  T ,  S  -  s t r u c t u r a l  s t i f f n e s s ,  m a s s ,

electromechanical and capacity matrices of the VC, R -

nodal force vector, Q - nodal charge vector, 6 - nodal

vector .

The solut ion of  the system (7.46) isn ' t  unique,  because U

and i! , as well as Q are unknown. In order to obtain the unigue

solution, an additional information about the electric circuit

parameters is necessary- Assuming an electric voltage value

applied to the electric terminals of a VC known, we denote the

corresponding part of the nodal potential vector as @n,
16 l

present ing the vector  6 as a=1" ' l  ,  where @.- Part  of  the nodal

l z )
potential vector corresponding to the remaining nodes' Similarly,

r0. I
the nodal charge vector is presented as Q= | n' | - tne subvector Q,

LorJ
corresponding to the nodes with no externaf electric voltage

applied can be regarded as zero' because a vc has no free charge'

and S into blocks

nodal potentials and

( 7 . 3 6 )  r e a d s  a s

r O \
i .e . ,  Q= l l ' |  .  p " . t i t ion ing  the  mat r ices  T

t v  I
t J

. corresponding to the partitioning of the

charges,  af ter  some manipulat ion the system

f M U + C U +
tFig.7.52 AFCH of_ the asymmet-r ic  v ibrat ion cycle VC at

k r = 5 . 1 O ' n / n ,  k = 5 . 1 Q ' N / n ,  c r = c = Q ,  Q = 2 O O ,  F o = 1 N

(in the shaded area the asynmetric vibration approxi-
mating a triangular pulse sequence takes place )
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9 = s * o . - T o u  , ( 7 . 4 4 )

.  ^ X  ^ - 1 ^ T
w n e r e J = - J + > > 5 .

l L  t Z  2 2  l Z

a

P r e s e n t a t i o n  o f  t h e  s y s t e m  ( 7 . 4 6 )  a s  ( 7 . 4 7 1 ,  ( 7 . 4 8 )  e n a b l e s

to decompose the source problem. The displacements of the points

of  the VC wi th the prescr ibed vol tages appl ied to the electr ic

terminals are obtained by consider ing the equat ion (7 -47)

separately. The form of the equation enables to apply the

technigues presented in Chap.5 for  obtain ing the opt imal-  contro l

Iaws of  a VC.

Programmed contro]- synthesis. Consider a

6 r ( t )  =  i o . ( t ) ,  E - ( t ) , . . . , r _ ( t ) l '
)

at the end state ntust  sat is fy the equal i t ies

o .  ( t " ) =  o z  ( t s )  = . . . =  E - ( t e )  =  V "  ,

where the potential value Y" ensures the equality t^=a as a

static equilibrium state- For obtaining V", the auxiliary problem

-x{; ^xr
I \ U = I - L .

i s  t o  b e  s o l v e d ,  w h e r e  I  =  ( 1  , 1  , . . . , 1  ) t

walue of V follows as
E

v

Now the nodal. displacement values at the end state can be

presented by means of the vector b , employing the relation

a -

l l

The t ime J.aw of  the mowement dur ing the t ime interval  [0,1. ]

be ing  exp ressed  as  ( see  F ig -7 .54b )

M i i + c i t + K * u = f * 6 , ,

where K* = K + T.sr:Tl ,  T* = -T,+ T,srts l"

Having obtained O. f rom (7.471

expressed as

( 7 . 4 7 >

, the nodal charges are

a

rod-type 
-VC

(7 .49 )

u

( 7 .  s 0 )

Having obtained U., the

( 7 .  s 1  )

(7 .s2)

( 7 . 5 3  )

Fig.7.54a.  The r ight-hand end moves due to the longi tudinal

deformat ion of  the VC, the lef t -hand end being f ixed r ig id ly.  The

lower electric terminal. of the VC is grounded, and to the upper

one, part i t ioned into n ident ical  segments,  e lectr ic  vol tages are

applied. It is necessary to determine the control voltage J-aws

6. ( t )  ensur ing the prescr ibed mot ion of  the r ight-hand end of  the

vc.
Assume the prescribed motion being the movement from the

posi t ion U.=0 to Lt  =8 wi th in the prescr ibed t ine interval  tn,

where U- -  the noda1 displacement of  the r ight-hand end. Af ter

the t ime instant  t=tg the displacement value U^=a is to be

ensured,  i .e. ,  v ibrat ion danping is  to be performed. The contro l

i n t e r va l  i s  assumed  t o  be  [O , t " l .  Cons ide r  t he  i n i t i a l  and  t he

end states of  the VC- At  the in i t ia l  s tate the zero displacement

and veloci ty  values U(O)=0, U<OI=O are assumed, and for  obtain ing

the end state the stat ic  equi l ibr ium eguat ion

'  s ( t )  =  4  t ' -  1?  tn+  -P  t "  ,
t ;  t '  t "

the target function to be mininized reads as

l t
9 1  1

r ' l (  ' l r r  I  r "  \ r r "  \ l
v  =  |  l l u - s ( t ) u l  l u - s ( t ) b l+ l u - s ( t ) b l  l u - s ( t ) b l l  d t  ,  ( 7 . s4 )

J  I L  J  L  J  L
o  L  

/  \  J  \  /  \  t )

Employing Lhe dynamic reduction by truncating higher mode

dynamic contributions, the function 1a is presented in modal

coordinates. The vector U is expressed through the lower modal

d i sp l acemen ts  as  U=a -2 ,  whe re  o  = l o  , o - , , . ,  , o .  I  o f  t he  d i r nens ion1  {  L a ' z '  h l

I lx l t  is  the matr ix ,  contain ing the f i rs t  h e igenvectors in i ts

colurnns,  I l  -  number of  d.o. f .  of  the f in i te e lement model  of  t .he

VC. The expression of  the target  funct ion is  obtained asK*u ( te )  =  T *o ( tg )

is  to be solved-

The components of the nodal potential vector

2 4 2
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Fig.7.54 Progranuned contro l  of  the aper iodic not ion VC;

a- construction diagram, 1 - VC, 2 - voltage sourcei

b- prescribed time law of the end-point displacement
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control voltages

m

4

2

2 r t

0
un{

"l
t

n

unl
o 1

0

Un,
- 0

rg t

u't

vgI

T
4 !

Un
n

veil ull
u;f _/- "l

lltr' -
0

Vei
Ve

c

Fig.7.56 Time laws of  the contro l  vol tages and the end-point
d i sp . I acemen t ;  -  -  V r . i  Y . " i  -  - - - .  -  V r "

z1

Vo; I- ' ln

,, J/ )1ven-E---
\z/ rt

Yet

un

0

un,

0
uni
o !

0

t f

4

\ r +- 0

2 4 4



d t ,  ( ? . 5 5 )

where  b=  sTMb  .

For obtaining the minimum value of 7 the equalities

z .=s ( t ) b . ,  z .=s ( t ) b .  a re  t o  be  he ld  f o r  a1 l  i =1_$ -  se l ec t i ng  t he

value h=D and subst i tut ing 2. ,  i  i . r to (7.47),  the contro l  laws

6({)  are obtained by solv ing a l inear a lgebraic equat ion system-

The obtained solution is exact at the selected num-ber ' of

modal components h=D , however, the Line law o(t) can be compaex

and inconvenient for practical applications -

we restr ic t  ourselves wi th the c lass of  d iscont inucfus

functions
P

\ -  L  / r \
/  

L \ \ u l  '

k =  1

where k- th e lement of  the vector  h( t )  is  expressed as

dynamic behavior of the VC dependent uPon the number of the

rectangular pulses p availalrle during the control time and upon

i ts durat ior  t "  .  In Fiq.7.56 T denotes the per iod of  the f i rs t

vibration mo'de of the VC- At the controJ- time value t"=0.25T a

satisfactory control wasn'L obtained even in the case of the

continuous control voltage law, because the response is severely

- influenced by higher nodal- components.

At  the values tn=T . r rd tn=ZT (r iq.7.56b,c)  the contro l  law

obtained by solving the inverse dynamic problem ensures a good

approximation of the desirable resPonse- At t"=T t.his

" 
approximation remains good in the case of the discontinuous

control functions, independent of the number of rectangular

. pglses. At tg=zT the number of rectangnrlar pulses infl-uents the

obtained mot ion law, @.9. ,  P=2 is insuf f ic ient  to obtain a

satisfactory motion law. However, the number p can be increased

up to the certa in l i rn i t ,  e.g. ,  good resul ts are obtained at  P=5,

but the further increase of this value makes the approximation

worse.

The above consideration alJ.ows to determine a region of

satisfactory control in the space defined by the number of modal

. c-omponents p , control time t" and number of control functions n.

In Fig"7.55 the shaded area at  the value P=2 presents the domain

where the motion 1aws close to the desirable ones are obtained.
'The 

left-hand border of the domain doesn't depend upon the value

p . The right-hand border moves to the right when increasing p up

to the certa in value ( in th is case -  up to 5-7) .  The fur ther

"'increase of the number of pulses doesn't improve the
i"Approximat ion,  and the width of  the area decreases.

Closed- loerp contro l  synthesis is  carr ied out  be apply ing the

techniques presented in Chap.5.2 based upon the inverse dynamic

problem solut ion.  Fig-7.57a presents a p iezoelectr ic  rod-type vC
'  ; ;1 ,  subjected to longi tudinal  deformat ions and possessing the

""leLectric terminals on its opposite p.).anes, a displacement and

veloci ty t ransducer 2,  present ing the values of  Z and Z as

. .e lectr ic  s ignals and the contro l  c i rcui t  3,  supply ing the vol tage

to the electric terminals dependent upon the input voltage and

.upon the values Z arrd Z. The vC 1 is a vibrating system with a

high Q-factor  value,  and i ts  mot ion between two stat ionary states

2 4 7

. = 
l:. i"[U,-'(t)b,] 

* [;,-;(t)b,]"]

l , i f  ( i - 1  ) -#  <  t  <  1 -#  ;
P P

0, otherwise '

i . e . ,  d i v i d i ng  t he  t ime  i n t e r va l  [ 0 , t " ]  i n t o  p  egua l -  pa r t s ,  h r . ( t )

being equal  to uni ty on the k- th interval ,  and egual  to zero 'on

the remaining part  of  the interval  tO,ts l  '

Without imposing any constraints upon the magnitudes of.. the

contro l  funct ions,  the target  funct ion is  minimized employing. the

g rad ien t  t echn igues .  F i g .7 .56a ,b , c  p resen t s  t i ne  l aws  o f  t he

control voltages 4 =V. (t) and of the corresponding motion laws

U-( t )  of  the end point  of  the VC, the opt imal  contro l  being

carr ied out  for  the f i rs t  three modal  components,  h=3.  .Tne

control  vol tages are presented on the lef t -hand s ide of  '  *he

Fig.7.56,  the corresponding moLion laws being presented ot , - ,  !h"

r ight-hand s ide.  The dashed J. ine presents the desirable mot ion

law un=s(t)b.  r f re mot ion Ians were obtained employing the fuI I

dynamic f in i te e lement nodel  (wi thout  t runcat ion).

The presented re lat ionships enable to t reat  the obtained

q ( t )  =  

{
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of deformation is accompanied by undesirable transient

vibrations. The cJ.osed loop control circuit is to be obtained in

order to ensure a prescribed speed of response and to damp

transient  v ibrat ions.

Consider a vC of  the length 1=0.085n, th ickness h=0.0095n

and width b=0.01 2m, mater ia l  constants being c l r=O -  Oxt  0N/ro2 ,

€ " r=8 .46c t ; ,  31 .=0 .135x10 -7 r / n ,  dens i t y  c  =Toookg /ma  and  assu .me

zero mater ia l  damping,  i -e. ,  v ibrat ion damping shouJ.d be obtained

purely by the control. The first longitudinal eigenfrequency of

the cantilever VC equals f:8646.36H2, vibration period being

T.=fr t .  Assune the desirable speed of  response being equal  to

0.5T1 ,  and,  consequent ly,  f rom the re lat ion (5.29) the values

1=0 .1T ,  ,  p=2> ,  a re  ob ta i ned .

If only the displacement and velocity of the end point of

the VC can be measured, the matrix Q reads as

Q * " = ( 0 , 0 ,  ' . . , 0 , 1 )

where I l -  nunber of  d.o. f -  of  the f in i te e1ement model-  Further we

assrtrne C=0 , f =T*, and the matrix fr u"t.rn expressed as

D -

i -e. ,  for  obtain ing the stabi l i ty  of  the contro l  systen only the

value of the parameter a is to be varied- The closed-Ioop

matr ices RVQ, F^SQ are obtained by the re lat ions of  the Chap.5.2.

In Fig.7.57b the t ransient .  mot ion laws of  the end-point  of

the VC are presented at several values of a . The dashed line in

Fig.7.57b presents the desirable mot ion law. The system is stable

only at  the values q>0.825 ,  the best  approximat ion to the

desirable motion J.aw being obtained at a=0 -A25 -

In Fig.7.58a a contro l  loop is  presented in the case,  when

the electr ic  terminals of  the VC are part i t ioned into two

ident ical  segments,  and in Fig.7.58b -  the corresponding mot ion

Iaws when the rectangular input pulse of the duration 1.. is

appl ied,  the dashed l ine present ing the desirable mot ion law-

o
Fig-7.57 Closed-Ioop contro l  system of  the VC wi th a s ingle

contro]- terninal; a) construction diagram; b) tlme laws
of the right-hand end displacement oi the vC:
1 -  w i t hou t  a  f eedback ;  2  -  a=e ;  3  -  d=0 .825  i  4  -  a=1 ,
the dashed line presenting the prescribed notion 1aw

-r Utn

I
I
I
I

ld '

z 1
--t

\
I\

i'r \ r,l

t -
,'l

\3
A.o-

Tt l2 T1 J  l { l z 21t

i l . { n - 7

rn

018

0,24

0

-..".,*.., [i] ,

un.1o-l
m

0,48

0,24

U

o
Fi9.7.58 Closed-Ioop contro l  system of  the VC wi th two contro l

terminals;  a)  construct ion diagra-mi b)  t ime laws of  the
right-hand end displacement of the vC, the dashed fine
presenting the prescribed motion law
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7.4.2 Kinematic pair notion contro1 by varying normal force

Eguations of motion of VCKP and real friction laws. The

simplest nodel of a vibration controlled kinematic pair (vcKP)

contains a rigid J.ink noving on a rough p1ane acted upon by a

constant external tangential force I ancl frict.ion forces'

Fig-7.59.  rn order to star t  the output  l ink not ion,  the normal

interaction force shou].d be Iess than the critical value of the

f r i c t i on  f o r ce ,  i . e . ,  N  (  :  -

The equation of motion of the VCKP link is presented as

I n i = - N f  ( 1  + a g ( o t ) ) s i € n x + I ' ,  ( ? . 5 6 )

where  -1s  g (o t )  <1  ,  q  3  1

Introducing the dinensionless quantities

lT f
I I I

L  =  o L r  M  =  -  
r

r  .  l l j @  . ,  I u

x  =  x - ,  X  =  X - ,  i n  p l a c e  o f  ( 7 . 5 6 ) we obtain the equation
I

x = - N f ( 1 + a g ( t ) ) (7 .  s7  )

L.he case of the

Fig.7.59 VCKP employing the vary ing normal  interact ion force

N

ii+

N-

s18nx + 1

+ \ +
,  !  a  t 2  )

;
z

T h e  e q u a t i o n s  ( 7 . 5 6 ) , ( 7 . 5 7 )  a r e  v a l . i d  i n

Coulonb friction law, and at the known value Nf it depends only

upon the sign of velocity. In reality it is valid onJ-y in a very

narrow velocity range, and, in general, complex friction l-aws are

employed. Here we enploy the friction Iaws containing Coulomb,

l inear and cubic components.  presented in Fig-7.25.

Consider the rigid link motion in the case of the time law

Nf being presented as a rectangular puJ-se

E' ig.7.60 Pglse-width nodulat ion of  thg nornal  forcel
N - acceleration stage ; N' - braking stage

Assume, that  in the in i t ia l  s tate \ f  > 1,  and the

l ink is  in a state of  rest .  I ts  mot ion begins at  the t ime

when the magnitude of Nf becornes less

f o r c e  I ,  i . e . ,  N r f  (  1  .  r n  t h e  c a s e

veloci ty  increases l inear ly

t
I

f <

( -
I N
l l

1-
I N\ 2

, i f

, i f

+ /

t <

r i g i d

instant

than the magnitude of . the

of  Coulonb f r ic t ion,  the
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s3

I f  at

value N.,

I =  ( 1

x  =  ( 1  -  N = f ) ( t  -  t , ) ,  t ,  (  t  (  t .

the t ime instant  t "  the force N takes i ts  in i t ia l

the veloci ty  decreases l inear ly as

-  N , f ) ( t 2 -  t l )  +  ( 1  -  
\ f ) ( t  

-  t , ) '  t  )  t ,  )

o.  09
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to

a

b . 0 7
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, s l 5
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03a

s35
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Fiq.7.61 Time J-aws of  the output  l ink veloci ty  at  the rectalgular
pulse of the normal. force at several friction ilat*
r e l a t i onsh ips :  a )  r  =0 (Cou lomb  f r i c t i on ) ,  b )  f  =2O ,
c)  z =8O(non-stop mot ion);  d)  s ine hal f -wave normal
f o r ce  pu l se ,  T  =2O i

+  -  N f  ;  x  -  F  ;  0 -  ;

unt i l  the zero value.

W e i n v e s t i g a t e ' t h e f o r m o f v e l o c i t y p u l s e s a t s e v e r a l

friction laws, when during the tine inLerva)- from t=tz until the

next normal force pulse the velocity reaches the zero value' The

resulLs are presented in Fiq. '1.61a,b,c at  the moving force value

f=O.Sf l . f  and the normar force varue N.=O'4NI '  The presence

decreasing part of the friction law relationship enabJ.es

obtain nearly rectangular velocity pulses' However, if at

certain velocity value the moving force I becomes greater than

the va].ue of Nf (the minimum point of the positive branch of the

fr ic t ion la l {  ic iat . ionship) ,  the back f ront  cf  the veloci tv  nr11sc

is never obtained,  because the veloci ty  doesn' t  reach the zeto

value af ter  the end of  the normal  force pulse,  Fi9.7.61c.  I f  the

force pulse has the sine half-wave shape, at the friction force

Iaw wi th the coef f ic ient  values ?=]  ,  b=;  ,  0=1O ,  r=2O the

normal force pulse and the velocity pulse end simultaneously,

F i g . 7 . 6 1 t l .

Mean velocity contro]- employing Pulse-width modu].ation of

normal interaction force. If during the time interval between two

force pulses the output  l ink veloci ty  doesn' t  reach the zelo

value,  i t  operaLes in the cont inuous mot ion mode'  Fig '7-60

presents the sequence of nidth-mo'dulated pulses of the period I '

* f r . r .  N*f>1,  andN-f(1 .  Denote the veloci ty  value at  the beginning

.of 
the period through Y]_, at the time instant of the normal

force change from N- to N+ - through Y+ , and at the end of the

period - through vl rn the case of Coulomb friction' the

output  l ink veloci ty  dur ing the t ime intervals T- and T+ var ies

as fo l lows:

F , r { i
-o -

-s.
- 0 . 7 5

-9 .

- I .

-0.55
-9,6s

-0.
-s.

gg5

g t E

n \ s
a2g

,925

.g3g

il
s.495
a . b t g

F ,  N r
- 9 .

- 9 . 7 5
"0.

-9.
-o.

415

020

- 4 . 4 2 5

g 3 b
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We restrict ourselves with the continuous motion mode,

.rhe., i+>0, x->0. rn this case the relat ions

I  
o*= u; + (1 -  N-f)T-,

| -- - w* t t1 - rtt'rt.t+
f  t a  Y  T  \  |  -  r r  r / a

are val id,  where T = 1++ T-

The constant  mean value of  the veloci ty  is  obtained,

Y - = Y -
1 0

S u b s t i t u t i n g  ( 7 . 6 0 )  i n t o  ( 7 . 5 9 )  ,  w e  o b t a i n

I -

T '  1 _ N f

T -  N - f - 1
r t  should be ment ioned, that  the re lat ion (7.61)

val id for  any value of  v
ô

As a mean acceleration value the quantity

,t' a^ - ao-

T

is  employed, def ined as

( 1  - N - f ) T - +  ( 1  - N - f ) T -
a - _

T

At the constant mean velocity val'ue o; = Y; ,
of the velocity is obtained from the refat ion

C O N C L U S I O N

The techniques for vibration analysis and motion control Iaw

Synthesis of  e last ic  st ructures wi th uni lateral ly  constra ined

mechanical contact interaction points have been developed,

systematically presented and applied to the dynamic analysis and

synthesis problems of vibrodrives.
j" ' Considering the techniques, the following conclusions should

be nade-

1. The techniques for reducing the number of the dynannic

degrees of  f reedom of  e last ic  st ructures wi th nonl inear i t ies

rbased upon the truncation of dynamic contributions of higher

modes have been developed- Such an approach enables to replace

the dynamic equat ions of  e last ic  st ructures wi th uni lateral

, constraints upon the displacements and velocities by a Iow

dimension equat ion of  mot ion wi th a nonl inear term represent ing

an elast ic  spr ing and diss ipat ive element of  unid i rect ional

act ion.

2. The numerical integration schemes of linear dynamic

equations have been extended in order to heat with nonlinear

'ones.  For the di rect  numerical  integraLion of  equat ions of  mot ion

of the structures with unilateral constraints case oriented

algorithrns have been developed employing the Lagrangian

nultiplier approach and supposing the minimurn work done by

interaction forces for making corrections upon the velocities and

accelerations at the time instant when the strucLure meets the

. ,constra int .  The approach was appl ied to the structures wi th

kinematic pairs interacting by normal, oblique impact and sJ-iding

..friction forces. The ammount of computaLions can be reduced in

the case of  the structures wi th local  zones of  nonl inear
' i n t e rac t i on .

3.  The analysis techniques of  the resonant v ibrat ion of
. i . :  ;

el"ast ic  mechanical-  s t ructures wi th nonl inear contact  interact ion

points wi th stat ionary or  s low-vary ing ampl i tudes have been

developed. For the stat ionary mot ion law analysis two al ternat ive

techniques have been employed: the soluLion of boundary value
' -Problem 

in t . ime and the weighted residual  approach'  a specia l
:

cdse of  the lat ter  being the harmonic balance method. Mot ion Iaws
' \n 

terms of  the s low vary ing ampl i tudes have been obtained by

( ? .  s )

i . e . ,

(7 .  se )

i f

( ? . 6 0 )

(7  . 61  )

i s

< 7 . 6 2 )

(7 .63 )
:

the var iat ion

o
(1  -  N - f )T -

( 7 . 6 4 )
t o  t o

The above consideration leads to the conclusion, that . the

mean veloci ty  of  the vcKP can be contro l led by means of  the.purse

width modulat ion,  i .e. ,by vary ing the rat io T*/T- at  T-+T-=cons.J.

The  f o rmu lae  (7 .61 ) ,  ( 7 .63 )  , ( 7 .64 )  enab le  t o  de te rm ine  t he

modulation depth according to the desirable values of the

veloci ty  and accelerat ion of  the ouLput l ink.  Such a contro l

method can be easi ly  real ized in a real- t ime and in c losed- loop

con t ro l  s ys tems .
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means of the tirne averaging technigues- When integrating the

averaged equations nunerically, at each tine station harmonic

components are obtained by means of the Fourier transform. The

appl icat ion to the uni lateral ly  constra ined structures requires

to transform eguations of motion employing the higher mode

dynamic contribution truncation techniques in order to obtain an

equation system with a nonlinear term.

4. The programmed and closed-Ioop controJ. synthesis methods

trave been developed enploying the optinat control technigues, the

inverse dynamic problen solution and the higher mode dynamii:

contribution truncation approach. The method can be applied to

the motion control synthesis of structures with the feedback

circui t  consist ing of  Iogical  e lements.  A l inear c losed- loop

control with the displacement and ve.l-ocity feedback is obtained

by employing the inverse dynanic problem approach, the prescribed

motion of a structure being expressed as a superposition of

exponent functions. A structural motion control synthesis with

the J.ogical feedback circuit has been carried out by resolving

the dynamic equations into modal. components and emploging a

separate feedback for each of them. The excitation Iaws ensuring

the prescribed resonant vibration patterns of the structure

points are obtained by so1ving inverse dynamic and optimization

problems.

5.  The f in i te e lement nodels of  p iezoelectr ic  v ibrocorr-

verters (VC) have been obtained.  Employing the var iat ional

formulation of theruropiezoelectricity the relations for obtaining

matr ices of  p iezoelectr ic  cont inua f in i te e lements have beeln

der ived,  v ibrat ion energy diss ipat ion models and the re lat ions

for taking account for vibroconverters as components of an

electr ic  c i rcui t  have been obtained.

6.  A fu l l  model  of  a v ibrodr ive (VD) taking account for

r ig id body mot ions of  the v ibrat ing l inks has been obtainect ,  . . the

finite element models of each link being presented in truncated

modal coordinates. The contact interaction models for

point-interaction and travelling wave vibrodrives have been

obtained employing a small displacement finite eJ.ement modeJ. and

phenomenological models of the interface between contactihg

l inks.  The dynamic character is t ics of  v ibrodr ives have been

formulated.

Considering applications' the following conclusions should

be ,made -

7. The free and forced inpact vibration of a rod-type vC has

been investigated employing the finite element model and

phenomenological models of a contact interaction. The folJ.owing

results have been obtained:

- the normal. inpact interaction of a discrete mechanical

system approximating the continuous one has been shown to be

€jla-stic, irrespectively of the restitution coefficienL values in

the vicinity of the contact Point;
-it is reasonable to employ the rheological modeJ. of the

,dynamic contact  interact ion '  i f  the st i f fness coef f ic ient  of  the

model  exceeds the stat ic  st i f fness of  the structure at  the

contact  point  less than to one order (10 t imes)-  Otherwise the

::.npact vibration lanr doesn't depend upon the local contact

cbndi t ion;

-, 8. Considlring a forced longitudinal impact vibration of a

rod-type VC employed as an input .Iink of a vD it has been

obtained, that the so].ution of time-averaged equations

considering tso Fourier conponents presents satisfactory results

only in the case of the two-mass elastic system- For obtaining

reliable results $rhen considering structural models, at least

four Fourier components are to be taken on account.

9. Employing the tine-averaging and nurnerical integration

;.techniques a step motion of vibration-controlled kinematic pairs

(V!KP) as wel1 as free and forced motions of a VD have been

investigated ernploying the lumped-mass and finite element mode1s,

complex friction laws being presented as a superposition of the

Coulomb, 1inear and cubic components. It has been shown that the

motion of the links of VCKP can be controlled empfoying a purely

'E4ngential vibration in a contact zone. The values of the norma1

-contact interaction forces have been obtained, ensuring equal

:steepnesses of  the s) .opes of  an output  l ink veloci ty  pulse.  The

durat ion of  t ransient  v ibrat ion law has been shown being

dependent upon a Q-factor value of a vc and upon the mass of an

output l ink.

1 0. rnvestigating the notion upon a
system of two elast ical.1y connected masses

rough surface of a

irnpacting upon each
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other under the harmonic excitation law, the directive motion of

a system as of a whoJ-e have been obtained. The direction of

motion can be reversed by an appropriate adjustnent of the

CouJ.onb friction coefficient value. An analysis has been carried

out and the dynamic characteristics of a VD employing this

operation principle have been obtained. The shape forms of the

rod-type VC and a frequency range of vibration laws containing a

single inpact during the excitation period have been determined.'

11. The shape form synthesis problems have been solved

employing the optinal design techniques- Special features. of

exciting asymrnetric vibration cycles in ring-t.ype VC have been

pointed ouL and the locations of asymmetrically vibrating points

on the circunference of the ring have been obtained. Placements

of such points have been shorrn to be severely influenced by the

excitation leve). of modal- components-

12. Shape forms of asymmetric vibration cycle concentrators

for two and three Fourier components and of a transformer of

rectangular  exci tat ion pulse ser ies into asymmetr ic  t r iangular

pulse series have been obtained-

13. By means of an inverse dynamic problem solution in modal

coordinates a VC with the internal impact pair excited by a

harmonic excitation law and producing a polyharmonic vibration

J-aw has been obtained. A shape form of a VC has been obtained

ensuring an asymnetric triangular pulse series response-

14. Employing the developed techniques the optimal control

Iaws and feedback circuit parameters have been obtained ensuring

a damping of transient vibrations occurring due to the externally

excited stepwise increments of longitudinal elastic deforrnation

of a VC. The progranmed and closed-Ioop controJ. Iaws with the

displacement and velocity feedback have been synthesized.

1 5. Investigating the models of the VCKP employing a varying

normal force, the complex friction laws ensuring the egual sIopes

of an output link velocity pulse have been obtained. fn Some

cases presence of a descending slope in a frictiol . law
relationship causes a non-stop motion of the output link after a

normal force pulse. At a high nornal force pulse frequency, a

stationary notion mode is obtained, the control of the velocity

and acceleration values being possible by means of the

width-modulated pulses of the normal force.
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AppENDrx L Numeercau TNTEGRATToN scHEMEs, THETR PARAHETERS

AND FEATURES

A1 .1  ALGoRr r I t r ' {  SSpJ  (o . z i enk iew i t cz  e t . a I .  [ 46 ] )

Alsorithm SS32

f r . = U + U e a t + i i a t ' t- t + A t  - t  - t  
1  

-  
" t - '

,:,
Ur_ar= U. + Urerat ;

" t+At -  " t  '

t + 2  e + 3  I  l
q'"'= (el^tM+r* ."C*2* oaK)-r (R-MUi*^._cU,*^._KU,_^. )

1 .

2 .

3' Ur*o.

TT
" r+At

4-o.

Algorithru SS22

:-
U.*a .=  U,*  Ur9rAt r  ,
:
" t * a t -  " t '

< z t  a t t  ^  -  , - t ,  Ia r  =  [ M  +  s i A L  U  *  - Z : o . n ,  \  n  -  \ ,

U " - o , = U + a t U , + r i t ' A { ;

ur*o. = ut + a(z)at ;

I T _
" t+At

1 / 2

1

zhat+.f,at2e | 1+zhate t+-f,tt2e.

I I T I  \' t  " t+At  /  ' .  ^ + 2  r t  . _ 3
r  ^ f  T T  r  a !  T r  ,  ( a )  A L- -u u1 - -z- r. * o. -6 ;

I t  ,  - .  r  i 2
+  A t  U i  +  o ' - ' ?  ;

. L 2
|  ^ . ( 3 )  A L  .- * t  - 7 ,

rhe matrix f

I r
I

t ' ' '=  |  o
l 2

L 
-oot

for the algorithn SS22 reads as
The matrix ltt' for the algorithn SS32 reads as

T< a)

1 / ?  1 / 6

1  1 / 2

1 1
z t f ?  - ^ + 2

, 1+2h^te.*i:,!--e_ € +h^t€ +6'^_!__er  i  u  a  z  |  
-  

z  o  { :  
- a

Algorithmic features of the above presented schemes are
summar i zed  i n  Tab le  A1 .1 ,  t aken  f r on  [ 46 ] .

t

1 1

1 1

0 1

.lat' 2hat+-lat'e

( 2 . 4 9 )



A1 .2 GENERALIZED NEWMARK'S SCHEI,TE

( M - K a t o n a , O .  z i e n k i e w i t c z ,  l 2 5 l l

For an undamped oscillator (h = 0) the error of the

displacement U.*o, at the tine point t+at is expressed as

where the values of the coefficients C are presented in Table

A1.2 ,  taken f rom [251.  For the n- th order scheme at  arbi t . rary

p a r a m e t e r  v a l u e s  F o r . . .  r F - - r  w €  o b t a i n  C o =  C r =  C z = . , , =  C _ =  0 ,

Therefore in the worst  case the error  doesn' t  exceed .=O(at-- ' ) .

Selecting parameter values I3u ensuring the value C-*r= 0 , a

higher accuracy order can be obtained.  However,  stabi l i ty

The values of the paraneters pu can be selected in order to

submit  some other features to a numerical  scheme- E.g. ,  for

obtain ing an uncondi t ional ly  stable schene, i t  is  necessary to

sa t i s f y  t he  cond i t i ons  (A1 .1 )  a t  oA t  +  o  -  A t  ID=2  ( t r ad i t i ona l

Newmark scheme) these conditions are as fol]-ows

FoZ  F ,  ,  / 3 .>  0 .5  .

Table A'1.4 presents the values of  parameters Fk and

the corresponding a1gorithnic features. The well-knorrn Houbolt

and Wilson schemes can be regarded as special cases of this

a1gor i thm fami ly.  The t radi t ional  forn of  the Houbo1t scheme is a

nul t is tep one,  and i t  can be ident i f ied wi th the general ized.

Newmark scheme after presenting as a single-step one. It can be

carr ied out  by wr i t ing the re lat ion (2.60) for  the t ime points

t-?Lt ,  t -at ,  t ,  t+at  and el iminat ing f rom the obtained system the

de r i va t i ves  U ,  U ,  U .

A1.3 FINITE ELEMEMTS IN TIME DOMAIN (I{ERMITIAN INTERPOLATION)

( J . A r g y r i s  e t  a I . ,  [ 1 ] )

A l  . 3 . 1  He rm i t i an  f unc t i ons

D = 0 ( l inear interpol-at ion,  2p + 1 = 1 )

3 : "=1  - r  ,  D l . = (

P = 1 (cubic inte lpolat ion,  2p + 1 = 3 )

#  [  
a " .  c l a t  +  c . L t " + . . . +  c  a t t + . . . ]  ,

condi t ion of  the numerical  scheme is

select ing the p,  values.

In [25]  i t  has been shown, that  t .he necessary and suf f ic ient

condi t ions for  the numerical  scheme stabi l i ty  when appl ied to the

undamped oscillator equation are as foJ.lows:

to be regarded when

( A 1  - 1 )

are

( A 1  . 2  )

i f  t he

( A 1  : 3  )

n = 2 : B o ) 0 , B r z O , a . > 0 ;

n  =  3  :  ? o )  0 ,  a 1 , a z , a a >  0 ,  e r d . -  a a a o >  0  ;

m  =  4  :  g o )  O ,  g r r g r r g " r g . z  0 ,  a l a z a a -  a o a z -  a . a 1 >  O  i

where the expressions of 8. through the parameters

p resen ted  i n  Tab le  A1 .3 .

F rom Tab le  A1 .3  ,  cond i t i ons  (A1 .1 )  and  assum ing  X=  oa {  - -  Q

we obtain the necessary stabi l i ty  condi t ions as

n = ? : f r . > 0 . 5 ;

t t t = 3 : o . > O , 5 ;

n  =  4  :  B . >  0 . 5  ,  O " -  F n >  0

A numerical scheme has no numerical damping,
fol lowing equations are satisf ied:

m  =  2  :  a . =  0  ;

n  =  3  :  B . B r -  B " B o =  0  , ( a z >  0 )  ;

n  =  4 :  a r a z a 3 -  a o a ] -  a . a t >  O ,  ( a : t -  4 a . a o >  O )

P = 2 (f i f th orQer interpolat ion, 2p + 1 = 5 )

oL= t  -  1Or"+  j5 { ' -  6 { '

tg.

^ t

@

1 0

^z
J =

q

^z
t t

a Z
J ro=  ( r

= 1 - 3 f , ' + Z < "

=  ( r  -  ? < ' +  ( " ) t t

3l^= 3<" - z<' ,

3 1 , =  ( -  6 2 +  6 " ; a t

-  6("+ B{ ' -  3{=)at

1Or " -  15 ( ' +  6 (o  ,

( -  4 ( ' +  ? ( ' -  3 (o ) ^ t  ,

o:"= (l('- *'* *' - !r ')ot' t z  -  1 1 , e  
" r ,  

1 . s r ^ * z
u " r -  \ 7  -  \  r  

z \  t ^ u

2 7 2 273



A1 .3.2 Numerical  schemes

L i n e a r s c h e m e ,  P = 0

,4x. = .BoXo *P, ,

.B l t=  r  +  a ,a t  c ,  r f o '=  I  +  F ra t  C

^ 1 2  ^  . - ;
r  D _  =  l t . a L  A .  ,' 1 0  1

# 1  -  r +  T
.  D  =  - f t  a L  I  t' l o 1

i2z

C u b i c s c h e m e ,  P = ' l

"Bnx. 
= 

"BoXo 
*P, ,

. B l ' =  r  *  a r a t  c  +  a . a t z ( c t -  K ) ,  
" B I =  

r  +  p r ^ t  c +  6 . d l t  ( c ' - K ) ,

rl2
1 1  =  d  A L  1 .

l L t

rZL
b  =  _ a  a L  I

t2z

1 l

J z  . - 2 "

. F -=  
a ra t  K  +  qz6 t -C  K

' - : 1  .  L 2

, F ' = - a . A t I + a r a t - C

r z 2  -  , . 2 ;
D = -L -  a au ]1.

3 1  Z

, 
"Al= 

pi^t K+ o.^t'Q K ,

, 
"t 'ot= 

-O{Lt I - F"N,"6 )

, 
"B1'= 

I - F.ol"K ,

P t  =  o r A t  R 1 - P l a t  R o ,  \ =  O  .

w tt-1,1 a ,  i l -L(t  1) -  M-re ^ -  /  a -  f  _ 1l\ = lvl .l\ r U = M u r ft = lll t1 , qi= { r /rr= ( - I

in  i :he case -uf  hornogeneous equat ion,  i .e.  at  R = 0 ,

subst i tut ing the re lat ions

U = - C U - K U
o o o '

U = - C U - K U
{ 1 1

into the above formulae, we obtain, that for the finear scheme

the fol lowing eguali t ies are satisf ied:

U = U + ^ t ( - B U + q U )
I O ' t o t t

u =  U +  ^ t  u  +  a !z ( -an  i i  + " t i  )
1  0  0  1  1  0  a  t '

At the parameter value (  =,  th is scheme coincides wi th the

traditional Newmark scheme ritfr lne parameter talrre" 7= | n=\
. ' " - 4 '

rt possesses an unconditional stabil ity ^t I s { s1 , and 
"t { > t

exhibi ts  a numerical  damping.

y ' -= l< . . - . . -B) t t  r  + . ,a t 'c ln .+ lGo.*- - - l " )^ t  r  +  n=at 'c l  n" ,
"  L ' t  z  2 '  z  J  t  L '  t  z  J

yF= ttt ( {z.R^- o.Ro ) ,

r + 1  r  r - 2  1 - ro r =  t ,  o " = - L ,  B r =  } : ,  P " =  ? ,

For the cubic scheme the fo l lowing equal i t ies are sat is f ied:

u.= %* at(-p,i i +o.i i.+ at t. i i  - 
"t .. i , i  ,

g. = g^+a tu^ +a t' f 1 -o. B, +F, )iio+ (o' -o, ) ii, ) +a to. F.ilt^ t...litl l .1  o  o  
L '  

t  t  z '  o  '  t  z '  t '  a  z  <  !  2 1 J

The cubic a lgor i thm fami ly possesses high accuracy,  and at

the parameter values 
Z< < s1 the uncondi t ional ly  stable numerical

schemes are obtained.

f '  # ' I  I  r r * '  B " - l  [ P ''."7' 
:";'l "'" = |-.* :; l ' '' = |.,,



Fif th order scheme, p = l

.Br\ 
= 

oBoXo *p. ,

= { t =  I  *  a , A t  C  +  a . a t 2 < c ' -  f l  +  o " a t ' { c -  -  C  [  -  X  c l ,

"B1 '=  
o ,o t  i  +  o"a1 ' !  i  +  o .a t "1  c  i  -  i . l ,

o B i ' =  - o r o t  f  +  o . a l ' [  _  o " A t " (  a .  _  *  l ,

-B i '=  I  -  o .a t ' i  -  o ,a t "d  i ,

=B l '=  r  +  F ,^ t6 ,  +  p .a t  <c ._  x l  *  Bnatn( ;  _ ;  [  _  n  c l  ,

, B | j =  F . a t  K  +  F r d t  C K  + , a " a t " 1  ;  K  _  K r ) ,

,t'1= -p.at I - rt.tti, o.at < a. _ i r ,

"4'= 
r - lt"ot'i. - /3.^t"; i ,

n l  l .ro= 
l(o,*=+Fz)at I  + (a.-a"+p;atzc + o"At"(  d '_ * , lo,*

* 
[ {-n.*. . -  r})^t  I  + <-oz+da+o-)^t"c F.ar"(  c '  -  J , ]0" ,

e f .
4= l<0.-."+p.1at'r + F.at"c ln *f1_.^n

J . i , L .  
- . - o " - F " ) a t 2 f  +  o . ^ t " C  

] R " .

o = l €  1 + z ( _ .  o = _ f  ^ _ { - q  n = ? 1 _ 3  n _ 1 _ 11  c  ' - z -  - Z C - , o " = - 6 O , B r = \  
, , , . _ _ Z A _ , t r . = _ 6 A ,

For the f i f th order scheme the fol lowing equali t ies aresat is f ied :

ur=  uo+ a t ( -Fruo+o.ur+  a t  F . i ,  -  A t  . ru : -  ^ t ra .u .  *  o t r . j i l l  ,

u r = uo +A r uo +A t- 
|  

(  -olr31 +F, ) uo+ (o' -a. ) l i .  )  +a t (o,8._0.) ' IJ 
r+

-at (-q,az*q" ) i l ] -  ,rn"ot. ' i '*  o,oror.t i ' l
The schemes are  l rn .^nd i  t -  i  ^^ -  r  ,  - -

"", "" " 
" "1 -l' 

?" =", "l","I "liI:::TI; 
"::::l:", ".n"ili".l"-ilijll,

amounts of  computat ional  resource are necessary than in the caseo f  t he  cub i c  ones .

T a b l e  4 1 . 1

Phase Ampl i  tude
enFor 

'- 
f i ;#"= stabi I i ty Ph,ase Arnpl i tude

ennoi 
' '" i/ joi"= stabi l i  ty

(_ ) ra t - )  o (a t )  0 .55S1 o(ar_)  0(at )  0-5t8,sa^
t 1

0 ( a t 4 )  0 ( a t r ) 0 ( a t 4 )  0 ( A t l )

o(at-41 911-41 +roar_z<6 ota t -Z1  9112y ooatZ<6

a=ai -0 .5r
o=81 -82_5

"=er-!er*!

-  a > D
ota,tz) ora,t3) b>o

-  I  z a 2 > t
'1r.612; t1r.612, 

-i.O

0lcs3ab
n \  - '  A ) 0

0 ( A t - , 0 ( a t r l  c i _ a o(a t3)  0 (a t3 )  cond i  t i  ona l
s tab i  I  i  t y

o(a t4)  o ra t3 l  a roa t2<6

0( l t4 )  0 (a t4 )  Lnrs tab le

T s b l e  A t

(.1 -2a1) /7

(2-3flo-3F1 ) ' /6

(1 -jgto_gt1) /6

(47-2 l  0po-3L' l  f i  1 ), /7 ZO ( I 5l ' l [ r2-1 t]5pt -90Fo_1 _9 )

B

(6FZ-6F1 -1 ) / , t z

(.7F2-6(tt  -90fro_1 9) /36D

U

t-r l t .+3FZ-?tr j)  /1 Z

(-3Llf i3+1 00t,2-60p1 _108o_t ) nqO
c52fra+1 90p2_1 DoF1 -4DFd-35/4A0

4+l' t.?p o-2p,

72r . zp , - t I

A 2

4 (.2{t 
Z-1 ) +71 (.1 +4A o_6{t 1) /B

4+eZ <ap , -af 
Z-1 ) /3

tz <zpr- l  s

1z

8 (ftZ- t| j)+ta ( 'zT3 _4{r 
1+Zt, o ) /3

4 QIt -t-1 ) +pZ (Z-Zt 
3-6f, Z+41,1 ) /3

4+^2 (q 
Z-6p 3-?,/3

zz tzp r-t t

12

ab l  e  41

2 7 7

2 7 6
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maximal accurEcy'
m = ? .
Lurcondi t i  onal si-abi I  i  ty

n = 2 ,
e x p l i c i t  s c h e n e

nraximal accuracy
m  =  3 .
rrncondit i  onai : t-abi I  i  t-y

m  =  3 ,
e x p l i c i t  s c h e m e
m  =  3 ,
[,li lson scheme
rn = 3,
H6ubol t sch€fire
m = 3 '
e x p l i c i t  s c h e m e

41 .4 f ,Jweri csl inteqnati  on formul Ee fon nonl inean 5ystsn5

z2s6

l ( o

tzs4

t2t6

l ( r

l?t4

X.(q

l { o

t?<J .6

T a b l o  A - 1  ' 5

rii+cu+ru=u (u,u ) +R tt I
fionl ineEn systerl

yii+cu+xu=R(t)
I inean sYstsTl

2. AaUr*1g=Gt+6r+H t ,+at  '

Hy r re  H r+Ar=  t ' l (Uga4s ,Us1 tg )  ,

) l on l i nean  equa t i on  a t  each  t ime
5teo
a )  ; imP l  e  i  t ena t i  on

A a u l l i f = G l + r t * H  l * r t  ,  i . 1 . 2 . . . .

b) Nenton-RaPhson i  terat ion

f i ; -^ ,  ou: l i r$ l *^r# l * ,  '  L=r '2 '  '  '

^nere Aj* r=l,4b;+bi(c-11 ,.0;,*-#lr, '

at-  i  =1 -  t -anqent i  a l  I  ineani  zat i  on

' K  s  v  ( j _ k ) !

b,-{, .  
a t"

^  ^  ( n - k ) !  '
h

b;=;f of,=ou-buoo , rr=oJ;
" o  

'

2 .  A A U 1 1 6 s = G s * A t , ,

65ene A=bld+bic+bF{ ,
G1*Ar=R r*^"- 

(MQ!+CQI**qil ;

3 .  f . -or=qi*bf ,aur+at ,  1 , .=o.u .

.t'.',1'.'llll
5ystefi Hi

[l:',:l l + n
l
t l  es

. -ui ) '

=[ ; ,

)'1etsr i
_ . ,

z{t l t '

I [:l
nonl  i

;

F:';t
I  l o c € l  rth

v ,  .  u  r ( v  2 , v  r )

,  r J r =  u r . r + 4 1 . ,  G r = G 2 ,  r r A t ,

'  G1= G1.  t ,+a t

( r )

tA|r-arrnl |n12)aul+r= Gza - AzlA; lc i

r^rnere ff lr= orr-' rftlu.or-oo frl" r.u,
au1=  -A l lA l zauz  +  A l l c l  ,  u r=u1 . t+a t
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APPENDIX 2.  XETHOO FOR OBTAININO OUASISTATIC COMPLIANCE
tlATRtX tNkTHE CASE OF STNOULAR STTFFNESS t" lATRtX
(G .Rozenb lun ,  t 3g l  )

f n  t he  case  o f  s i ngu la r  s t i f f ness  ma t r i x  t he  re l a t i on  (1 -19 )
can' t  be immediately appl ied.  rn order to f ind an expression for
Su wi thout  obtain ing the higher st ructural  modes,  the fot lowinq
auxi l iary d i f ferent ia l  equat ion is  considered

f l r U + K U = I o c o s x t  ,  ( A 2 . . 1  )

f rom which the 1imi t  value of  the displacement vector  U is
ob ta i ned  a t  X  +  0 -  I f  t he  ma t r i x  K  i s  s i ngu la r ,  i . e - ,  t he
structure possesses r ig id body d.o. f . ,  the vector  of  the squares
of angular eigenfrequencies and the eigenvector matrix can be

fo"l
-  l o .  l

p r e s e n t e d  a s  o - = l  
" 1 ,  "  

-  [  o o , d 1 , a " J  ,  w h e r e  t h e  i n d e x  , r 0 , r

L-")
corresponds to the rigid_body structuraf
var iables as (1 -12),  where the roodal

modes.  Subst i tut ing the

displacement vector  z

appears 
" .  

,=[ r t , l ,  an"  erasr ic
t . l

vector  u-  
"" rL; : iexpressed 

as

l J .  =  L r z r *  L r z r=  |  ^1d iag ( l  / . 2 )n r ,

component  o f  the  d isp lacement

1 -
+  ^ 2 d r a g (  '  

, / _ z ) d '  ]  I ' o ,  ( A 2 , 2  )

and the rigid-body component. of the displacement vector _ as

U"  =  aoZo  ,

w h e r e U = U .  + U o

Tak ing  accoun t  f o r  (A2 .21 ,
(A2 .1 )  can  be  p resen ted  as

1 A 2  ? \

( 4 2 . 4 )

( A 2 . 3 ) ,  ( } . 2 - 4 ) ,  t h e  e q u a t i o n

M u l t i p t y i n g  ( A 2 . 5 )

taking account upon the
the expression of  l i "  is
equa t i on  (A2 .5 )  enab les

+ M U . + K U = I o c o s x t ( A 2 .  s )

f rom the lef t -hand s ide by ai  and
orthogonal i ty  condi t ion alMU"= a:KU"= 0,
obtained,  subst i tut ion of  which into the
to obtain the equat ion

281

tT;lllpJ.[::;1[;1.
D [ < d

( k )
PZUZ=  dk  '  k=1 .n

:concrnizst ion of the schente taking on account
loca l  no t r ' l  i nean i t ies  P  =  i  0  P? l

[:*:][:J .,.,fU+Cg+KU=R/  t  )

: d. x=ll
K

t-gn ni t-h r-rni I at-eral constrai ni-
the di 9pl acenrents, and,. l ihen.

:,.; ' ;Eii;"'. '- 'on-tr'e v&t sCiii e

z. Arrou, = S, -  cr,  eo

nhene Ar r=A, z-A ztA tlA n, tr=c r-lr rrn ; lc'

^ (r= rztllrc;i-t <e ,EllE r-a ot ;

3.  
( l ) -  

= df.  t i iau ,  rAe au1=-Ai lnrraur*el lcr;

Ib]= -u;in;^- ,Ibi= -u;fl,.Ibl ,
r^rhere {drr--Mr, -Mz1MiiM12,

^ y= Gzfl;tP.?)- t t e l[ ] 
-- ou. I ;

t i l )  =t i ' j ' -*  j f f t ,  k=r- .

r r j+cu+xu'R( t  )  ,

PxU I  d0
( } . )  ( k )

P H U =  0  ,  P r U =  0  '  1 " = 1 , r r

non l i nean  s ! / 5 tem n i t h  t he  cons tna in tE  pnesen t i nq  t he
( - l ou l  ca tb  f  F i  c t i on  i n tFndc t i o l ' l  pa i r ' s

2 .  A a U - G - P r t ^ ,

r.rhere to-(PA-1pY I 
-1-1pg-15-601 

;

:. f-=eftuu*ru , CI = f--u-1P ru ,
o  ( k )

iu=<pM-lpr t  
-1<p u - -oul  

, r . .=Tl

noffrral interaction fsr 'ce impetug
dur . ing  one t ime s tEP (  t , t+At ) :
^  A t , -  i  \ . ,
5  = ? - \ r  1 + ^ g ,  g + A t / r ^ 1 .  r , + A g

nonmal contact intenaction force
at  the  t ime Fo in t  t+At  :

F  =  r o .  t + a t + 4 2 . e + a t

tiF,!illYi,.l-t' 
de tenm i n inq-.r 

i;";
E b l  e  A 1  - 7

2.  Aau. *6r=Gr+ac -Pr lo  ,  l ther 'e  A=b l ' ,1+b lc+b;K ,  Gg4at=R

' ',,=I'il^i:1;;i

r. u = qi+r,!au

b,.=11, .  
A i -*

^  ^  ( n -P , )  I
^ * - , t  - h  a  -! A - a k  * k r o  

-  k =  o .  n  i

- tMql+cq!+Kai) ,

+A2 .1+L , t  '  F t=  t s2 .  t +a t
5 l l  . >0 ,  F l t  . 20  ,

tl = tl--n-tF'r=,. ,

r,rher'e r o= 
( Fr,A- 1Pf,f,r 

-1 tr,,A-1c-aol ; iu.= tFr,t-1F' l -t F 
(tl)-

f o n  s l  i d i n g  p o i  n :  ^ y . : =  i v , i ,  l u p . i l =  k r i r . ;

q , = f t r r * r o .  t * a r ) + t 1 . t + a t , ,  s 1 = F r .  t r a t ,  F H =  l s .  s + a r ,

i t e n a t i o n  f o n  r l e t e n r n i n i n g  a c t i v e  c o n s t n a i ) l t s ,  i D  l [ '

i t - e r a t - i o n  f o r  d e t - e n m i n i n g  : l  i d i n g  p a i r s ,  k * l 5 f i i l l l 5 j l



M U " + K U " = P I o c o s r t  ,

w h e r e  R = I - M A o A :

A p p r o a c h i n g t h e l i n i t  \ +  0  ,  t h e  e q u a t i o n

obtained as

K U.= P 1 'o

T T _ N D Tu l  -  v  ] i  r o

The general soluLion Uo can be presented as

U ^ = U . - a o f

l[: l] [:'] ="'"
where the .]-ower index at the blocks of the matrix K

corresponds to the number of rows and colurnns equal to the number

o f  r i g i d  body  d -o . f -  r n  gene ra l ,  i t  doesn ' t  ma t t e r  ,  wha t

p a r t i c u l a r  d . o . f .  a r e  " f i x e d "  i n  t h e  e q u a t i o n  ( A 2 . 8 ) ,  i . e . ,

correspond to the blocks wi th the lower index " f " , .  however,  the

brock K* should be nonsinsurar. Denotins a = l:; : I , the
l 0  0  |
L J

vecLor  Uo is  exPressed as

( A 3 . 1  )

are employed, where r-  u. i ty  matr ix  of  the di .mension eguar to the
length of  the vector  u '  i -  * i ty  matr ix  of  Lhe dimension equal  to
t he  number  o f  cons t ra i n t s  ( r ows  o f  t he  ma t r i x  p ) ,  and  T  =2 r r -

aThe generalized ampritude vector contains the ampritudes of
Four ier  components:

U  =  [  t l t  I f  12  r r 3  T r?  l r" ^  
-  

L  
- " '  ' "  '  U "  r  U "  r  U "  ,  , "  

)
Displacenents and forces are presented as truncated Fourier

ser ies as
P

U( t )  =  N ( t )Ua  =  ) -  r { "o . ( k -1  )o t  +  Uks in (k -1  )o t  ,f:, "
P

R( t )  =  N ( t )R^  =  ) -  nucos (k -1  )o t  +  RLs in (k *1  ) . t  ,  (A3 .2 )
f,:' "

p

V ( t )  =  h I ( t ) r , / a  =  
) - i t u c o s ( k - t ) - r  

-  i t k s j n ( k - 1  ) . t

The component amplitude vectors are denoLed as

.  f U *  I  r w k  r  r p k  l
T T K I c |  , r , k I c |  ^ k | " . |  _

"  
=  

|  u '  I '  
r {  =  

I  u , i  I '  o ^  =  
|  " ;  l ,  k=T lp .  (A3 .3 )

t " "J  L-"J LN"J
As only stat ionary mot ions of  the f requency @ are

considerred, the ampritude component.s are obtained as a result of

f f  Lhe matr ix  K would be non-singular ,  the equat ions(A2.2)

and  (A2 -7 )  wou ld  enab le  t o  ob ta i n  t he  re l a t i on  (1 .19 ) .  I n  t he

case of  the s ingular  st i f fness matr ix ,  a solut ion U" of  the

equat ion (A2.7,  isn ' t  unique.  Therefore we consider one of  the

r  u , t
admissib le solut ions U-=l  

-1,  
obtained f rom the equat ion*  

L O J

APPENDIX 3 .  NETATIONS FOR STATIONARY AND TRANSIENT } IOTION
ANALYSIS IN TERHS OF SLOW VARYINO AHPLITUDES

A3.1 TIARMONIC BALANCE METHOD

The hantronic bal-ance method can be regarded as a special
case o f  the  we igh ted  res idua l  approach app l ied  in  Chap.4 .2  to  the
sys tem

M  i i  +  c  U  +  K  U  =  v ( U , U )  +  R ( t )
The harnonic weight functions

N ( t ) =  f  I  f c o s o t  f s i n o t  I c o s 2 o t  f s i l 2 o t  . . .  l

N(t )=  1  i  f cos . t  i s ln  t  i cos2 . t  i shz- t  . . .  l

( l ^2  .6  )

( A 2 . 6  )  i s

( 4 2 . 7  )

( A 2 . B )

(A2.  e  )

( A 2 . 1 0 )

( 4 . 1  )

Mult ip ly ing (A2.10) f rorn the lef t -hand s ide by aoM and

empJoying the or thogonal i ty  condi t ion aiUU.= C ,  we obtain

6 = - a i r * c R I ' o  ( A 2 . 1 1 >

S u b s t i t u t i n S  ( A 2 . 1 1  )  a n d  ( A 2 . 9 )  i n t o  ( A 2 . 1 0 ) ,  w e  o b t a i n

u .  =  R ' G  R  F o  ( A ? . 1 ? )

Now f r om (A2 .12>  )  and  (A2 .2 ' )  t he  conp l i ance  ma ' ; r i x  i s

expressed as

sr. = RtG R - Aldiag( 1/-r,  
)  t ' ,

282

( 4 2 .  1 3  )
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the Four ier  t ransform

uk = rrk (u) , l l tk = r'Tk (v) , Rk = r'Tk (R)

Assume the nonlinear interaction taking place in local zones

of the structure and present vectors and matrices in a block form

u=f u' l  
,  n=[ o. l

L u,J L Y,(u., u,)J
(43.  4 )

Denote through I. the unity matrix of the dimension llrxfl, t

where nz is equal to the length of the vector U, . Matrices of

the dimension n{l_ containing the harmonic response amplitddes
z

to unity harmonic excitations at the nonlinearity points denote

through Sk , l<=Tp , where nxn - the dinension of the equation

(4 .1 ) .  vec to r s  t '  ,  t <= t , p  each  o f  t he  l eng th  o  con ta i n  t he

hamonic response amplitudes of the J-inear part of the structure

to the external  exci tat . ion R(t) .

The matrices Sk and vectors I are determined from the

matrix equation

From the equat ion (A3.7)  immediately fo l1ows the s imple

iteration formula for obtaining the solution, however, very often

i t  exhib i ts  d. ivergence.

The Newton-Raphson iteration scheme reads as follows:

(  I  - S ^ z D  ) (  U : - ' - U . 1 . )  = - U : ,  * S o . Y i .  * P ^ .  ,  ( A , 3 . 8 )

AIIi
where through D ttre derivative matrix D = az 

is denoted.
uUo.

, . . rd i f ferent iat ion are l inear operat ions,  their  pr ior i ty  order can

be exchanged:

a :
A Z

O U
A 2

AI'T (1ll )'  2 '
( a v  ' l

- ^ l  2  |
=  I t t  -  |

L aU^2 J
( A 3 . 9 )

n

I z

0
I

z

lK- - ;M 
-uc_ 

l f  r -  ip . l  =
L  - . u C  K  - , " 1  l L  I

or :

f':ll ':l*.=lrl,P^.=li'1,s..=
L':J L':I

t he  equa t i on  (4 .21  ) '  r eads  as

I
- j  , k=T ,p  (A3 .5 )

O U
 Z

where through IT the Fourier transform is denoted, tralsforming a

vector-colunn of time functions of the length nz into a vector of

harmonic anplitude components of the length 2Pn= . Expanding the

re l a t i on  (A3 .9 )  we  ob ta i n

( 4 3 . 1 0 )
t d \  d U  a F  a U

l  -  r n l  2  2  |  2  2- - -
l a U a U a U a U

4 2 2 4 2
where ok = (k-1 )o , and the zero submatrices on the right-hand

side of  the eguat ion (A3.5)  are of  Lhe dimension n.{ .  ,  where

Il, - length of the subvector U .

consider matr ices S:  of  the dimension nzxnz and vectors I

of  the length l l r ,  contain ing Lhe rows of  S" and the elements of

P " ,  co r respond ing  t o  t he  d -o . f .  sub jec ted  t o  non l i nea r

interact ion.  Denot ing

A U  d U
where the derivatives 

t 
, 

'

aU aU
A Z  A Z

aU
22 l

; -  
=  

t  
, . .  ,  I . c o s ( i - 1  ) o t  ,  I . s i n ( l - l  ) - t ,  . . . ] . . . o  ,

aU
A 2

q U -  /  I

- -  =  1 . . . , - f , ( i - 1 ) - s i n ( i - 1 ) o t ,  I , ( 1 - 1  ) o c o s (  j - - 1  ) - t , . . . 1 . , - .
AU

A Z

Expl ic i t ly  the der ivat ive matr ix  is  expressed as

are expresseo as

J n2 U

^ z
J

2 .  (A3 .6  )

Uo.  =  S^rWo,  (U. ,  U .  )  +  Po, (A3 .7  )



^ n r l  ^ u r l
ota  ow

2 .  Z C

"":* 1
awt a]l|'

2 .  2 .

"Ut "Ut2 c  Z E

: :

a\IiP a1tr1P
z c  z c

, t a t  - r r l
O U  O U

2 c  2 .

aYP a\{IP
2 B  2 a

*t ^rr'
O U  O U

2 c  2 6

aigt d\{l'
z c  2 c

aU{2 aUP
2 c  2 E

avt aW'
2 .  Z a

aUP aUP
2 c  Z a

: .

z c  2 a

aVP alilp
Z .  2 a

aul" dur
2 c  2 a

,  ( 4 3 . 1  1  )

A3.2 NI,JIIIERICAL IMTEGRATION OF TIME AVERAGED EQUATIONS.

FORMULAE FOR OBTAINING DERIVATIVE T{ATRICES

aB' allt

"U" 
,U"

c a

aYz a\iz
a

aU" aU"
c t

aFt ag'

,Ut 
"U"

- rn i  + l ' t  ^o l
o l  o t l l  d l l

^trt ^.', ;-ov o\.) 
"rfc a

^sZ ^m2 ^d ,2o a  o w  d v
t a a

aur dU' aljt
c t

osrz  s rn2  ^nr2
o tl olt dll

c

aU' alf aIf
c a

allip

:T TP

aFp

"ut

dflP aYiP ai{o

aU' alf al]"
c 3

afe afp afo

- 1  - €  ^ t a
O U  d U  O U

aHP all/P
2 c  Z c

"u 
,u

av

au

AYIP

aup

agp

- t"

d!V

.  ( j - 1  ) o c o s ( j - 1  ) o t
AU

,  ( A 3 . 1 3 )

( A 3 . 1 4 )

where

( o w  a F  ' l

= rT ' l  -  cos( j -1  ) - t  -  + ( j -1  )os in ( j -1  )o t  |  ,
L dU, 6Uz )

f a W '  1
I  z "  I
l r l

l":-|
l a Y '  I
|  2 .  I
l - l
|  , , 1  |
I  d \ ) -  |

L  t '  I

f a\Ii' 
'l

|  2 "  I
l - l

I 
u';" 

I
l a f l ' l
|  2 .  I
t - l

l a u r  I
L  2 "  J

ra \ { t  dP  I
=  I T ' l  =  s h ( J - 1 ) o t  +  - - 3 1 ; - 1 ) o c o s ( J - 1 ) - t  I

L u U ,  
-  

a U .  )

where

( A 3 . 1 2 )

.l':

r r J  =  r r P

The dimension of  the eguat ion is  redt '  "  
l - ' ' : I '

account that  Ua = Y'  = 0 -

At  each Nlr to.r in.pr tson iLerat ion i t  is  necessarY to solve a

I inear a lgebraic equat ion sysLem of  the dimension (2p- '1 )nrx

(2p-1 )n.  and to carry out  n.P t imes the discrete Four ier

t ransform dur ing t .he t ime interval  t0 'T l  .  Therefore the

necessary anmount of t.he computational resource depends mainly

upon the number of  the nonl inear ly interacted d.o- f -  I i r ,  rather

than upon the dimension n of  the strueture.

l '*: l

Irl
l uu j l
L  " J

l#t'l#l

. (  d w
=  I T ' l  -  s i n ( j - 1  ) . t  +

L a u

( a w
=  I T ' l  -  c o s ( j - 1  ) o t  -

L a U

aW
.  ( j - 1  )os in ( j - 1  )o t

O U

f  r J  =  I ' P



AppENDtx 4.  merHoo FoR oBTAlNtNo STABLE cLosED-LooP

CONTROL SYSTEI.I

The expressions of feedback coefficients of the synthesized

control 1aw contain arbitrary constant matrices G and H (see the

exp ress ions  (5 .32 ) ,  ( 5 .37 ) ) .  The  a rb i t r a r i ness  o f  t he  ma t r i ces

can be enployed for  ensur ing the stabi l i ty  of  the system, that '

in  general ,  isn ' t  guaranteed by apply ing the synthesis method

p r e s e n t e d  i n  C h a p . 5 . 2 . 2 .

For obtain ing a stabi l i ty  condi t ion we employ the f i rs t

L iapunov's theorem, present ing the eguat ion (5.39) as a f i rs t

order d i f ferent ia l  equat ion system in terms of  the var iables
.  TT  \

s = l Y l a s
L U J

(44 .  1  )

For the asymptot ic  stabi l i ty  of  the system (5-42) a

necessary and sufficient condiLion is that the real- parts of the

eigenvalues of the matrix 4.*r^ totld be negative. rn the case

of symmetr ic  matr ices K,  C are slrmmetric, the suf f ic ient

stabi l i ty  condi t ion is  that  the natr ices K,  C would be posi t ive

def in i te.  However,  the matr ices can be symmetr ic  only i f  R = Qt,

therefore we'11 consider the general  case.

We presenL B as a function of the components of the matrices

C and H as B = B(6" i ,4:)  rn order to avoid cumbersome

computat ions,  fur ther we restr ic t  ourselves wi th the funct ional

re lat ion U = e(6_:) .  an eigenvalue problem for  the matr ix  B reads

as fo l lows:

[ u - , q + i n )

where the scalar  quant i t ies ( ,  n represent real .  and imaginary

parts of an eigenvalue, and vectors a and b - real and imaginary

parts of  an eigenvector-

The  p rob lem (A4 .2 )  has  2n  so lu t i ons  ( . , ' 4 . , , 8 . , b r ,  i = I ;m -

For the contro l  system stabi l i ty  a l l  Lhe real  parts of  the

eigenvalues ( j ,  i=T;m should be negat ive-  r f  an eigenvalue

with the posi t ive real  part  is  present,  the parameters q should

. f 0 r l
s -  I  =  = l s=Bs

L -pr-'x -M-'c I

I ] ( a + 1 b ) = 0 ,  < A 4 . ? >

288
289

be adjusted in order to make i t  negat ive.  Taking on account that

:T,:::::i:: :::::L:""::.l"i:,:il'il:';"::.::1""":."::aai;n,
def in ing the current  increments  

&. ,  d i r "" t  proport ional  to ; ; ;

components of the gradient vector ( 
u( 

, 1=T;8, j=Tfr) .
a8i :

For obtain ing the part ia l  der ivat ives
ag, .

; '  for lowing rerat ions- Together wi th the r i .grr t -na|a s ide eigenva.rue- . ' , p rob lem (5 .43 )  we  cons ide r  t he  l e f t _hand  s i de  p rob lem

< i+ i f r  >  [n -  ( r+1n  t r l  =0 ,  (A4 .8 )L  _ j  
- ,

or ,  what is  t .he sme,

fe ' -  <  {  +  in  )  r  I  (  i+  i f r  r '=n
L  

-  
J  

\  "  '  r v  /  - w

where the vectors i ,  f r  . "nr" .ent  the real  and imaginary parts of
the lef t -hand s ide row_vector ,  the eigenvalues {+in coincid ing
for the two problems.

Equating to zero the real and imaginary parts of the
di f ferent ia ls of  the _Ief t -hand s ides of  the equat ions
( A 4 - 3 ) ,  w e  o b t a i n

ar
we employ the

exaCt

( A 4 . 2 ,  ,

ag

where the elernents 
{:  of the matrix C

v e c t o r  g  =  ( g r r , g t z , , , . , g r r , , . . , & , u ) t .  A f t e r  s o m e  m a n i p u r a t i o n

uPon  t he  sys tem (A4 .4 ) ,  we  ob ta i n

B o a - f o a + r 6 b - a 6 <

B d b - ( 6 b - n 6 a - b d f

6 a B - f 6 a + n 6 b - a 6 {

6 b B - < 6 b - r 6 a - b 6 {

-  a ( B a )
+ D 6 t + - 6 9 = 0  ,

a8

a ( B b )
- a 6 ? + - - - 6 9 = 0  

)
a8

:  a ( a B )
+ D 6 t + - - - - 6 9 = O  ,

ag

_  a ( b B )
- a 6 r + = - - 6 9 = 0

(A4 .  4  )

are presented as the



-  a (Ba )  -  a (Bb )
D = b - - - - - - - + a -

ag ag

After  e l iminat ing 64 f rom the system (A4-5),  bre obLain the

relationship betneen smal-l variations of the elements of the

matrix G and small variations of the real part of the eigenvalue

as

o { = d o g  , ( 4 4 . 6 )

,1

w h e r e  d = - (  D q  - A p  )  r e e r e s e n t s  t h e g r a d i e n t v e c t o r .
D z  +  o " '

Assrme J- , ,1- , . . .  ,1.  being the num.bers of  a lJ.  e igenvalues

possessing "dangerous" real .  parts,  i -e. ,  { .  )  -€,  f=T]T.  The

gradient vectors of the real- parts is presented in the space of

the parameters &.  as

I l o f  
+ Q 6 ' r + A 6 g = 0 ,

I  (A4 .s )
l - qo r+pon+n6g=0 ,

whe re  p  =  f r u - i " ,  g  =  i u  *  f r " ,  A  =  
-  d (Ba )  

-  -  a (Ba ) ,

(  a | .  a ( .  d ( .  l
d  _  |  L r  L r  I
*  

-  
|  

-  
t  

-  
t . . .  t  

-  
|  r'' 

L aB( uB,. uqo J

It appears natural to expect, that a smal.J. increment

ra{, _'l
-ag Signl  

_ l " t  
the parameter q.  value enables to decrease the

LA&.J
a< .

values of  f l r  i f  a l l  
; i ,  "=O 

are of  the same sign,  t - " . . . . ,

A J

i f  they are al l  posi t ive or  aI I  negat ive.

For decreasing real parts of the "dangerous" eigenvahie!'s

until they become negative, the following atgorithrn can be

employed.

A].gor i thm A4.1

'1 - Assume 4i= 0 , 1=Tl J=T;k .

2. Solve an eigenvalue problem

f e rn  )  -  (  {  +  r n  )  r l  <  
"+  

1b  )  =0 .
L " ' q : '  

\  '  
I  

.  * '

3 .  I f  aU r , . " t -  ,  r=Tf f i ,  9o  to  s tep  9 ,  e lse  go  to  s tep  4 .

4. For a]. l  ( ,")-e ,  f=Tlt ,  obtain the vectors

-  f  a ( , -  _ ' )
q = l  - - , i = . 1  

, t t ,  j = 1  , k l- .  
r a 4 i  )

5. Select the current element 
4i from the vector g .

ar.
6. r f  a l t  "  ,  r=Tl t  are of  the same sign,  go to step 7,

a R . .

e l se  go  t o  s t ep  8 .

- 

r. o"",r-" 
45=S,-ag 

"*[5.| 
, where ^g - some positive

scal.ar quantity, and go to step 2-

8.  f f  q_ is  the last  e lement of  the vector  g ,  9o to step 9,

else go to step 5.

9 .  s n d .

aga8

I f  the appl icat ion of  the above presented algor i thm wasn' t
successful ,  i -e. ,  i f  the values of  the parameters g. :  ensur ing

t , ra O ,  f  =T;m haven'L been obLained,  the contro l -  system

should be modi f ied by select ing another values of  the matr ices R
aOi l  .  (or)  e
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