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behavior. Nevertheless, from an engineer's point of view

LN T RyOnDil :Cr Tl

The natural way of comprehension of the behavior of complex

"sfstéms leads through their decomposition into components or

units the governing laws of behavior of which are already known,

" followed by a subsequent reconstruction of the initial system by

‘rejoining these components. 1In many cases the adequate

- mathematical model can be obtained by employing the finite number

. of components. From the mathematician's point of view, the

discretization of a continuous system can be carried out in
several alternative ways, e.g., employing the finite difference

techniques, the weighted residuals, employing the stationarity

conditions of certain functionals etc., considering as a source

object the differential equations representing the system's

an

_-approach containing a greater amount of engineering intuition is

often preferable, based upon an analogy between the discrete

. elements and the corresponding parts of a considered domain. For

the time being a common way to solve engineering problems of

. various nature has been established and called by O0.Zienkiewitcz

a standard discrete problem solution method. With application to
mechanical systems this method establishing the

force-displacement relations for each structure element, and

assumes

elements

assembling structure from the
equilibrium conditions at the nodes of jointing

employing force

The way to obtain discrete mathematical models has found its
perfect representation as the finite element method. Computer
analysis of a continuous dynamic mechanical system, as a rule,

dealé with the discretization in space as well as in time.

. However, in order to preserve the idea of the standard discrete

- problem, usually it appears preferable to make an explicit

. distinction between space and time discretization stages.

The matrix equation of motion of a finite element structure

appears as a result of the space discretization stage. In the

. dynamic system analysis such a presentation has its old

)_ﬁradition. In the pre-computer time as well as nowadays a lot of

effort has been devoted to the analysis of the discrete one-mass

_.or several-mass models taking on account the mutual stiffness,




dissipative and other linear or nonlinear elements. The- iérge
variety of dynamic mechanical systems can be represented in such
a way, involving a great deal of engineering intuition &nd . a
proper comprehension of essence of the physical phenomena when
obtaining a model. The advent of computers and the finite eledent
techniques has presented a formal way for obtaining ‘compléx
models of large dimension and for carrying out their analyéisf On
the other hand, treating traditional and finite element’ models
from a common point of view enables to acquire a more profound
comprehension about the dynamic features of a mechanical sY§teh.
For obtaining the time laws of motion of a mechanical system
numerical and analytical techniques can be employed. Since’ the
very formation of approximation techniques the minimum of - manual
calculations producing sufficient accuracy was regarded as the
main efficiency feature of a method. Availability of computers
nowadays has transferred the accent to the minimizatidn"éf
computer resource during the approximation techniéﬁég
applications. This is especially actual when solving optimization
and synthesis problems requiring to obtain the motion laws
repeatedly as well as in everyday engineering computations
employing small computers. &
A computational effort can be reduced by developing
techniques in two ways. First, the models of small dimension and
at the same time preserving the adequateness of a model to the
real system should be employed. On the contrary to the direct
construction of several degree of freedom model, it appears
preferable to consider as a source the finite element model and
to develop the formal techniques for reducing the number of ‘its
dynamic degrees of freedom. On this account the substruchring
techniques and other decomposition approaches, applicable 1h‘ﬁ6s€
cases to the linear systems, should be mentioned. Neverthéleésf
more research in this field should be done regarding the
systematization and the development of new approaches applicéﬁlé
to certain classes of nonlinear systems. The second way fdf
computational effort reduction is to develop efficient time
integration schemes for obtaining the motion laws. A tremendous
contribution to the development and systematic presentation of

numerical integration techniques of equations of motion of finité’

element structures has been made by the scientists at the

.research carried out by

- <—7—

well-known research centers gquided by J.H.Argyris, K.J.Bathe,

.0.Zienkiewitcz.

The approximate analytical approaches to the structural

_dynamic analysis have not yet reached the same degree of

perfection, though the approximate techniques of a nonlinear

.vibration theory have been developed and systematically presented
by -H.H.Boroswocsos, [0.A.MuTponoJsckua, E.II.IlomoB, B.A.fIKycoBud,
.B.M,.CrapxvECKIt, B.B.BoJoTVH,

E.H.PossHBaccep and oth. A

development should be made applying existing approximate

,analytical techniques taking on account specific features of

equations of motion of large dimension and obtaining the mixed

.analytical-numerical algorithms. The similar is to be pointed out

considering the structure motion control problems. The case

oriented algorithms can be obtained on the base of fundamental
H.H.Kpacosckui, JI.C.TIoHTpATVH,
H.B.B2HWYYK, ®.J.UYspHOYCBKO, J.J.AKYyJSHKO, B.H.CokoJog,
B.M . YTxkuH, B.A.Tpownkwuz, E.II.Ilomos, II.X.KpyTEBKO, A.C.TawmyJvH,
M .3.-KOJOBCKUM .

: This book carries out the message of wunification of main
ideas of finite element dynamic analysis of elastic mechanical
systems and the theories of nonlinear vibration and control. The
developed techniques can be applied to the range of problems
encountered in the fields of mechanical system design taking on
,%qcount the elastic vibration, e.g., when considering the
problems of employing the controlled elastic vibration of rigid
bgdips and active vibrating systems. The significance of such
problems has increased in connection with the development - of
precise founded by
J.Bansevi&ius, A.A.EpofesB, B.B.J/2BpVHSHKO and oth.

The book consists of an introduction an two parts. The

vibromechanics systems K.Ragulskis,

igpxoguction presents the construction diagrams of several
traditipnal and original vibrodrives, the main features of their
mathematical models are discussed. In the first part a systematic
approach to the dynamic degree of freedom reduction, obtaining
the transient and stationary motion laws and motion control
synthesis of elastic structures with nonlinear interaction. The
second part presents applications of the developed techniques to
the analysis and synthesis of vibrodrives. Finite element models

of piezoelectric vibroconverters and of vibrodrives are obtained,




taking on account the rigid body motion of the deformable links.
The computed results of the real systems are presented.

The first chapter presents the techniques for the dynawic

reduction of structural models with large number of d.o.f. to the

simpler models with only several dynamic d.o.f. Such a tran§£9rm

is always more or less related with the loss of information,ggggt

the dynamic features of the structure. The equations of mqggon

are presented in the modal coordinates of the linear part of the

structure. If the vibration frequency Fourier components -lie. in
the lower range of the eigenfrequency spectrum, truncation of

dynamic contributions of higher modes doesn't cause significant

errors. The techniques are applicable to linear structures and to

the structures with nonlinear interaction points.

The second chapter presents the techniques for obtaining

the time laws of the 1linear structure motion or the Fourier
components of the dynamic response. As the main techniqueglqthe
direct numerical integration in time is considered. Seyéral
methods for obtaining the numerical schemes and the criferia
evaluating their asymptotic features are presented.

In the third chapter the linear structure numerical

integration techniques are extended in order to match the
nonlinear problems by means of the linearization of
nonlinearities or by iterating at each integration step. In the
case of essentially nonlinear structures with kinematic pairs
interacting by the normal, oblique impact and sliding friction
forces the numerical integration scheme is developed enabling to
take account of various normal contact and sliding friction force
characteristics as well as the impact model represented by the
coefficient of restitution. The scheme is presented as an
extension of the generalized Newmark's scheme.

The fourth chapter presents the techniques for obtaining

periodic stationary vibration laws and transient vibration laws
with slow varying amplitudes of the high resonant quality
structures with nonlinear interaction points. In this case direct
numerical integration is hardly possible because of the large
number of oscillations until a stationary motion is obtained. The
presented semi-analytical techniques enable to obtain stable as

well as unstable motion laws, therefore it is necessary to check

their stability employing the stability criteria.

In the fifth chapter the techmiques for obtaining the

programmed and closed-loop control laws of the elastic structural
deformation. The programmed control lLaws are obtained employing
the optimum system control techniques, and the feedback control
is synthesized by solving the inverse dynamic problems. 1In both
cases”“the dynamic reduction techniques presented in the first
‘ ¢hdpter are employed. The problem of exciting a prescribed
'féébﬁant structural vibration law is considered.

The sixth chapter presents the finite element models of

“""piezoelectric vibroconverters and vibrodrives. The relations

‘between the mechanical, electrical and thermal phenomena are
“considered together with the mechanical contact interaction
models. The presented dynamic equations take on account a rigid
body motion of an elastic structure. The dynamic criteria of a
vibrodrive are formulated.

In the seventh chapter the techmiques presented above are

"émplbYed for the dynamic analysis of vibrodrives and their
“Béiiponents, vibration-controlled kinematic pairs, impact-friction
'Gibrations of vibroconverters. optimal control laws of
deformation motions of elastic strxuctures are obtained and
optimal shape synthesis of vibroconverters and vibration

‘‘concentrators of complex vibrational motion laws is carried out.




CONSTRUCTION DIAGRAMS AND MATHEMATICAL MODELS OF VIBRODRIVES

In 1960-1970 a drive of a new type was created. It was based
upon the conversion of high frequency mechanical vibrations into
directive motion. Following the analogy with electric, pneumatic
and hydraulic drives the new drive was named a vibrational drive,
or a vibrodrive (VD).

The operation principle of a VD is close to that of a common
class of mechanisms converting vibrations into directive motion.
This class includes, e.g., ratchet-and -pawl gears, idle stroke
mechanisms etc., operating at a frequency below 1kHz. Vibrodrives
operate at a frequency from 20kHz and more. The operating
frequency range is the main distinguishing feature between
vibrodrives and the traditional mechanisms converting vibrations
into rotative or 1linear motion. The high frequency causes
qualitative differences in operation parameters as well as new
phenomena that have not been observed in mechanisms before [56].

Maiden constructions of VD employed principles of
low-frequency vibroconveyers. A diagram of one of the first and
most simple constructions is presented in Fig.1 [119]. It is an
unreversal VD with an active input 1link consisting of four
piezoelectric plates the electrodes of which are fed by the high
frequency voltage. The springs are employed for improving the
contact interaction between the input and output links. In order
to minimize energy dissipation the center points of the plates
are employed for fixings because they coincide with the nodal
points of odd vibrational modes.

The reverse motion of VD can be obtained by employing
bimorfic plates and exciting their longitudinal and flexural
vibration. A construction diagram of such a VD is presenﬁedm in
Fig.2 [119]. In the bimorfic plate with partitioned eleqtrddés
the flexural and longitudinal vibrations ave excited
simultaneously, a phase shift between them being varied by
adjusting the input voltage. If the phase shift is made equal to
180o by means of a switch, the reverse motion of the output 1link
is obtained.

Improved operation characteristics exhibits the VD in Fig.3
[148]. It has a =xrotor 2 consisting of two truncated cones,

piezoelectric plates 4 and 5 with the correspondingly truncated

10

Fig.1 Vibrodrive: 1 - rotor;
2,3,4,5 - piezoelectric
plates; 6 - springs

1 - frame; 2 - rotor;

¥ 4,5-piezoelectric plates;

6 - dielectric spacers;
7 - additional vibro-
converter; 8 - mount;
S-support; 10,11-screws

11

Fig.2 Reversal vibrodrive:

1 - piezoelectric plate;
2 - rotor;
3 - voltage converter;

4 - switches

Fig.4 Piezoelectric vibrodrive
with the ring vibroconverter:

1 - frame; 2 - rotor;
3-bearing; 4-piezoelectric
ring; 5 - mount;6,7-straps;

8,9-eletrodes connected into
separate electric circuits;
10-switch; 11-high voltage
source; 12 - contact elements




ig.5 Step-motion vibrodrive: 1 !
e 1 —poutput Shatt; 2 =02,5% connecting elements;

3 - open-loop piezoelectric ring; 4 - master shaft

12

ends and an auxiliary piezoelectric vibroconverter(VvC) 7. A high
frequency input voltage is applied simultaneously to the
electrodes of the two plates 4,5 and the VC 7. In the plates 4
and 5 the longitudinal vibration is excited by the input voltage
aﬂd the flexural vibration by means of the VC 7. The moving ends
of the plates cause the rotation of the rotor as a result of the
dynamic contact interaction.

The construction diagram in Fig.4 [149] presents a reversal
VD employing a ring piezoelectric VC with partitioned electrodes.
A high frequency voltage is transferred through a switch 10 to
the electrodes. In the piezoelectric ring 4 standing waves are
excited and the attached contact elements move along elliptical
paths. The interaction between the contact elements and the rotor
results in its rotational movement. The motion is reversed by
means of switching into the position 11.

A step-motion VD is presented in Fig.5 [147]. It consists of
the output shaft 1 made as a metallic ring rigidly connected by
means of the element 2 with one end of the open-loop
piezoelectric ring 3. The second end of a piezoelectric ring is
connected rigidly with the shaft 4 by means of the element 5. The
VD operates as follows. The master Cchaft 4 roktztes with a
constant angular velocity © . If no voltage is applied to the
open-loop piezoelectric ring 3, the output shaft 1 has the same
rotation velocity. When a voltage pulse is applied, the ring
contracts and submits the output shaft 1 the velocity pulse w_.

2
The total velocity of the output shaft now equals = ey ey,

When «” reaches its maximum value, a negative voltage pulse ;s
applied to the ring 3 resulting in a negative velocity pulse o
of the output shaft that reduces the total velocity wvalue to
zZero.

A reversal. VD in Fig.6 [152]1 eontains. a+ - frame, 1, a
cylindrical rotor 2 in bearings 3, and a metallic concentrator 4
with three piezoelectric VC 5,6,7 attached to its end face and
held down by a bolt 9 together with a passive strap 8. The VC
5,6,7 are fed from the voltage block 11 through the phase-shift
circuit 10. The moving end of the concentrator 4 contacts with
the inner surface of the rotor 2, the other end being attached to
frame 1 by means of the elastic plate 12 by the bolts 13. The

voltage is applied to each VC 5,6,7 with the phase shift 600, and

13




flexural vibrations are submitted to the concentrator 4. 1Its
moving end follows a circular path and causes a rotation of the
rotor 2. The rotation direction is reversed by reversing the
voltage phase shift.

The VD in Fig.7 [150] consists of a rigid rotor . 1, . elastic
element 2 made as a steel ring coaxial with the rotor 1. The
bearing axes with the piezoelectric ring vibroconverters 5 free
arranged in a gap between the rotor 1 and the ring 2 are mounted
on the immobile support 3. The VC are fed by a high frequency
voltage through a phase-shift circuit. Within the ring 2 the
bearing element 6 is arranged.

The vibrodrive operates as follows. A high frequency
voltage is supplied consequently through the phase shift circuit
to the VC 5 exciting. the =radial as well as . the tangentdal
vibration. In the elastic rotor 2 a travelling wave is excited
causing the rotation of the VC on their axes 4 and in their turn
causing a rotation of the rotor 1. This construction enables to
obtain an increased torque value in comparison with VD employing
beam and plate VC, owing to the larger deformation forces of the
cylindrical VC and their combined participation when transferring
%,torque from the elastic element 2 to the rotor 1.

The distinguishing feature of the above presented
constructions appears to be the employment of resonant vibrations
of an input link, because only in the vicinity of resonance the
sufficiently large values of amplitudes are obtained. As a
shortcoming of such VD appears the narrow range of operating
frequencies because of a large value of the mechanical Q-factor
of a VC. In order to obtain the sufficiently large values of
amplitudes employing a nonresonant vibration the packages of
vibroconverters are employed. In Fig.8 the construction diagram
of such a vibrodrive is presented [151].

The VD consists of a VC package 1, where the polarization
vectors of neighboring VC have the opposite directions. One end
face of a package is attached to the basis 2, and the other one
to the bar 3 that in its turn at one end is connected by a clamp
with the basis 2, and at the other end with the rod 5. The rod 5
is fixed in cantilever on the basis 2, and its free end is
attached with the moving link 6. The integrating circuit consistis

of two high-voltage gates 7 and 8 and two resistances 9 and 10.

14
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Fig.6 Reversal vibrodrive: 1 - frame; 2 - rotor; 3 - bearings;
4 - concentrator; 5-7 - piezoelectric vibroconverters;
8 - passive strap; 9 - tightening screw; 10 - phase-shift
circuit; 11-voltage source; 12-elastic plate; 13 - screws

A
PR T
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##ig.7 Vibrodrive: 1 - rotor; 2 - elastic element; 3 - immobile
support; 4 - bearing axes; 5 - piezoceramic ring
vibroconverters; 6 - bearing element
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Fig.8a- Vibrodrive: 1 - vibroconverter package; 2 - basis;

3 - bar; 4 - clamp; 5 - rod; 6 - moving link; 7,8 -
high voltage gates; 9,10-resistances; 11-high voltage
source; 12-trigger; 13-alternating voltage source;

b- High voltage gate: 19,20- resistances; 16,17,21 -

windings of the pulse transformer 18; 14,15-transistors

Fig.9 Beam deflection unit: 1,2 - piezoelectric plates;
3 - frame; 4 - reflector; 5-10 - external electrodes;
11-16 - internal electrodes; 17 - control block
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The piezoelectric package 1 is connected electrically with the
high-voltage gates 7 and 8 whose outputs are connected with the
outputs of the high-voltage source 11 through the resistances 9
and 10, and the controlled inputs - with the direct and inverse

outputs of the trigger 12 of the control circuit. The. input of

..the trigger is connected to the alternating voltage source 13.

Zhe high voltage gates 7 and 8 consist of the transistors 14 and

~;‘157connected in sequence. Between the emitters and bases of the

.current source upon a countable input of the trigger 12 and

transistors the secondary windings 16 and 17 of the pulse
transformer 18 are connected, and between the emitters and
collectors there are the resistances 19 and 20, the controlled
input of the gates 7 and 8 being connected to the primary winding
of the pulse transformer 18.

The VD operates as follows. When vibrations of the rod 5 are
excited by the piezoelectric package 1 through the bar 3, it
interacts with the moving 1link 6 in its turn causing the
excitation of flexural vibrations in the rod 5. A proper
adjustment of the vibration phases enables to obtain an efficient
operation law of the VD by transferring vibrations from the
piezoelectric package 1 to the rod 3 with the minimum loss of
energy. The applied voltage is of the order of hundreds of volts,
and the vibration amplitude reaches the value of 100x. The
failure of the piezoelectric package is prevented by the clamp 4
and the rod 5.

The vibration of the piezoelectric package 1 is excited as
follows. The high-voltage gates i | and 8 are switched
electronically by means of pulses in the control circuit. It

enables to adjust the vibration frequency of a package in order

“to coincide with the resonant frequency of the flexural vibration

.of the rod 5 and to increase the mechanical efficiency of the VD.

X The pulse voltage is transferred from the alternating
reverses it. The signal from the direct and inverse outputs of
the trigger 12 is transferred to the control inputs of the gates
7 and 8 and reverses them alternately. As a result the
piezoelectric package is alternately switched to the resistors 9
and 10 comprising an integrating circuit. On its output the
exponentially varying voltage is obtained. As the excitation

frequency is considerably lower the the first resonant frequency

17




of the package 1, static electrical capacity prevails. The
package is charged and uncharged from the high voltage source 11
through the keys 7(8) and the resistor 9(10) of the integrating
eircuit’

The above mentioned construction examples are presented in
order to indicate at a wide variety of possible constructionél
solutions and to point out at typical features of VD rather than
to make a a comprehensive overview. There are a lot of other
mechanisms employing the controlled elastic deformation ind
vibration. A beam deflection wunit, Fig.9 [119], employes the
possibility of the flexural deformation control in blmorflc
piezoelectric elements. This unit enables to increase én
operation speed and precision of the scanning and simultaneouéiy
to simplify the construction and to reduce its weight in
comparison with the conventional ones. Fig.11 shows the
construction diagram of the unit and the sectional views. The
piezoelectric plates 1 and 2 are rigidly connected into the
bimorfic element and fixed into the frame 3 by one of its ends.
At the other end the reflector 4 is attached. The external 5-10
and the internal 11-19 electrodes are connected electrically with
the control block 17.

The unit operates as follows. If the control voltage is
applied at the electrodes 5,6,11 and 12 , one of the plates
elongates and the other shortens causing the bending of the
bimorfic element in the plane XOY. If the control voltage is
applied at the electrodes 7-10 and 13-16, the bending of tﬁe
bimorfic element in the plane XOZ is obtained. These flexural
motions cause the angular motions of the reflector 4 proportional
to the magnitudes of the applied voltages.

Mathematical models of VD. Many of VD are obtained y by

modifying the traditional vibroconveyers by increasing their
operation frequency several hundred times. However, at ultrasonic
operating frequencies the elastic resonant vibration and elastic
wave phenomena take place. The amplitudes and phases of the
points of a VC differ from each other depending upon the form of
standing or travelling waves.

The measuring and experimental investigation of the
vibrations in the active links of VD is complicated because of

very small amplitudes and high vibration frequencies. The

18

o

experimental investigation can be carried out by means of an
interferometric holography. Fig.10a presents a resonant vibration
hologram of the piezoelectric cylinder employed as an input link
of a VD (vibration frequency %~ 24000Hz). The vibration mode has
three standing elastic waves along a circumference and one half
of the wave along the height of the cylinder. Fig.10b presents
the computed wave form. During contact interaction the elasticity
of the contacting pairs is of great importance, too. The duration
of the contact-impact interaction comprises a greater part of the
v1brat10n period, and in some cases contacting points don't
separate at all. Consequently, deformations of the contacting
surface and sliding friction forces are to be taken into account.
Vlbrodrlves are separated into point-contact and surface-contact
classes according to the way how the contact surface is deformed.

In point-contact VD a contact interaction takes place only in

discrete points by means of contact elements attached to an input

'iink, local contact phenomena being assumed independent at each

.contact point. In the surface-contact VD their 1links contact

along continuous parts of their surface.

The above mentioned considerations suggest the insufficiency
of employing lumped parameter mathematical models for presenting
the dynamic equations of VD. The adequate mathematical models of

VD can be obtained employing the finite element techniques

_enabling to present a dynamic behavior of elastic links of a

great variety of VD configurations (Fig.11) by means of

‘structural dynamic equations. The dynamic behavior of a VD as of

a whole is obtained by adding nonlinear terms and wunilateral
constraints upon displacements and velocities of nodal points of

a model. In general, the dynamics of VD is governed by the system

MU+ CU+EKU=WU,U) + R(t) - PA - Pla_, (a)
Pelli=ldy, (b)
a ; + PTﬁ = 0 , in the case of active constraints (b),(c)
] J;+br;»:axT+MexL, (a)
|xT| < erN s (e)
R (£)

19




where M,C,K - mass, damping and stiffness matrices of the model,
U - nodal displacement vector,
R(t) - exciting force vector,
PN — constraint matrix defining the constraints in the
direction normal to the contacting surfaces,
d - vector defining initial clearances between the
contact points of an input link and the surface of
an output link,
a,PT — matrices, in a no-sliding case defining the
constraints upon the velocities in the
| direction tangential to the contacting surfaces,
S normal and tangeﬁtial components of the contact
forces,
w — angular or linear displacement of an output link (in the
" case of several d.o.f. of an output link - displacement
vector),
J - mass or moment of inertia of an output link,
b - fluid friction coefficient,
i Mem_ external force moment or external force applied to an
M output link,

? ]Q — Coulomb friction coefficient,

W(U,ﬁ) — term accounting for other nonlinear interaction
forces and the nonlinear features of a structure.

The main difficulties of the computer analysis of the above
mentioned model are due to its essential nonlinearity, large
dimension and a necessity to compute during time intervals
consisting of a large number of vibration periods. A thorough and
comprehensive analysis of the dynamic equations is possible only
if corresponding effective techniques and software is available.
| The techniques based upon the direct integration of the equations
i of motion and the time-averaging approach together with the
” structural displacement control synthesis algorithms are
; presented in the first part of this work. The second part
l concentrates upon the finite element models of VD and the

| analysis of computed results obtained employing the techniques

presented in the first part.

Fig.10a- Resonant vibration hologram of a piezoelectrig
cylinder vibroconverter (vibration frequency =
b- computed standing wave shape of the 1/6 part of, the

cylinder
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Fig.11 Finite element models of
a,b - with piezoelectric
c - with cylindrical VC;
e - with disk VC and rod

PART ¢ 1 BeBaloH N T5QL WESTS

method
and those

The displacement approach of the finite element

produces for both the continuous mechanical systems

with lumped parameters the uniform model equations of motion

MU+ CU+ KU-=WU,U) + R(t) , (x)
where M,C,K - matrices of the elastic structure, R(T) -
exciting force vector, W(U,U) - nonlinear force vector.

For obtaining the motion law U(t) the equation (*) is
integrated directly in time or, alternatively, some analytical
approximations are employed.

Up to this time the great experience has been obtained in
the field of the linear and nonlinear mechanical vibration
analysis [88,839]. As a rule, exact or approximate analytical

approaches had been adopted successfully to the systems with only
several degrees of freedom (d.o.f.), in remaining cases employing
numerical or semianalytical techniques.

with a

is expensive and requires great amounts of

Obtaining the transient response of the structures

large number of d.o.f.

computational resource, therefore the efficient direct
integration algorithms are necessary. There are a lot of
case-oriented algorithms enabling to obtain the necessary
features of accuracy, stability etc. of the numerical schemes
[46,25,43,8]. The linear system integration schemes can be
successfully adopted to nonlinear cases by means of the
v}inearization during an integration step or by solving a
x-fﬁfﬂonlinear algebraic equation at each time station [1]. There is

TV;ﬂd need to regard both single-step and multi-step numerical
el

kx?schemes because the relations transforming the numerical scheme
from single-step form to multi-step and vice-versa have been
" established (e.g., the well-known Houbolt and Wilson schemes can
be derived from the generalized Newmark's method [46,25]).
2 4 The stationary motion laws of elastic structures as well as
vibrodrives:
rod vibroconverters (VC); the transient ones can be obtained by the direct integration of
d - with ring VC; the equations of motion. If the damping forces are present, the
concentrator
transient motions taking place after an external force
22
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application upon a structure cease after a certain time interval
t* . The motion law after the time point t* can be reasonably
regarded as stationary. Unfortunately, for the structures with
high values of the mechanical Q-factor (high-quality resonant
structures) such an approach is very inefficient and can even
produce incorrect results because of a very large number of
integration steps qntil the stationary motion law is obtained. ir
some cases even the existence of a periodic motion at a giveﬁ
excitation law remains unclear. As a principal source of the
rounding-off errors appears the essential difference between the
magnitudes of conservative and dissipative members in the

equations of motion. The inertia force MU and elastic force KU

predominate the dissipative force CU, [Mﬁ|>>|CU|, |KU|>>|CU|, but

the dynamic equilibrium requirement implies the relation
[MU+KU|=x|CU|, resulting in poor accuracy of the computear
arithmetics. £

There are several approaches enabling to avoid or to reduce
the difficulties mentioned above [49,51,30,131,142,145]. Aas a
rule, they can be adopted directly to the structures with only
several degrees of freedom. Regarding the large structures, some
development is necessary. The analysis of stationary motion laws
in time domain can be carried out by finding the zero values of
some algebraic function obtained by integrating directly the
equations of motion [137,101,28]. In the frequency domain the
nonlinear harmonic balance equations are obtained, and the use of
the averaging techniques enables to investigate transient motions
in terms of slow-varying amplitudes 1[63,30,121]. In [63] the
combined harmonic balance and direct integration approach was
applied to the structures with local nonlinearities.

An important class is comprised by the systems with
kinematic pairs interacting by the normal, oblique impact or
sliding friction forces [133,107,108,50,51,122]. Considering the

numerical analysis oriented formulation, in place of the
L)

nonlinear force term W(U,U) the constraints PU < do, P U=d,

o= o R are employed and the case oriented numerical

integration and time-averaging techniques are to be developed
[60-63]

Obtaining a system with the prescribed dynamic features

comprises the essence of the synthesis problem. On one hand, it
can be approached as the optimal shape design problem
152,14,139,124,127]  or , the materials with the necessary
mechanical properties can be employed in order to obtain the
éesirable dynamic response [31]. On the other hand, active
éQntrol methods can be adopted [95,109,110,112]. The prescribed
;étibns of the mechanical structures can be obtained by employing
éhe general optimal control techniques [39,114,143,141,118].

In [65,78] the transient structural vibration programmed
éontrol synthesis algorithm is presented. A general approach to
Eﬁe closed loop control synthesis is presented by the dynamic
programming method, the use of which is restrained with the
s}stems with several d.o.f. [9]. The most common way to obtain
the closed loop control system is to employ the automatic control
techniques [87,102,109]. The techniques based upon the inverse
dynamic problem solution are applicable, too [93,115,129,80]. 1In
4#his case the synthesis is carried out on base of the general
statements defined by symmetry considerations. It has been shown
that the properties of the obtained control 1laws are fully
identical to those obtained by employing classical methods of the
control theory based on the minimization of quadratic functional
49157,




1. DYNAMIC MODELS AND THEIR REDUCTION

This chapter presents the techniques for reducing the number
of dynamic degrees of freedom of elastic structures with
nonlinearities. For the linear structures, the mass condensation
and the higher mode dynamic contribution truncation approache§
are possible. In :nonlinear structural analysis the modei
equations are represented in modal coordinates of the linear part
of the structure or in modal coordinates of the structure
linearized at the solution point, with subsequent truncation of
dynamic contributions of higher modes. The alternative approaches
are based on identification techniques for obtaining a- reduced
set of dynamic equations. :

The original results presented in this chapter consist of
the development of the dynamic contribution truncation method
applied to the elastic structures with unilateral constraints
upon their displacements and velocities. The model equations are
represented in modal coordinates of the linear structure, and as
a result, a low-dimension equation system with the nonlinear term
is obtained. This approach is directly applied to the structures
with the impact and sliding friction interaction points. If
simultaneously the dynamic and dissipative contributions of
higher modes are truncated, the nonlinear term represents a force
created by an elastic spring of unidirectional action. If the
dissipative contributions are retained, a unidirectional
dissipative element and a spring are represented by this

nonlinear term.
1.1 REDUCTION OF LINEAR STRUCTURAL EQUATIONS

The mass condensation approach. The consideration is

restricted within the range of elastic structures with

proportional damping presented by the matrix equation of motion

MU+CU+XU=R(t) , (1.1)

where M, K, C = oM + 3K - mass, stiffness and damping structural
matrices U, R - nodal displacement and external force vectors.
The early approaches to the reduction of the number of dynamic

degrees of freedom (d.o.f.) of the equation (1.1) treated some of

e
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them as the master d.o.f. and eliminated the remaining ones from
(1.1) [13,19,27]. Such a reduction, called dynamic condensation,
was obtained by presenting the equation (1.1) as
uVM11M12 U C“C12 U K K U

1 1 12 12 1

0
2o W |8 : e = 2
M;;Mzz Uz C21022 Uz sz Kzz Uz R, ,
where '"2" indicates the master d.o.f.

External forces are assumed to be applied only to the master
GeorEijriie. .y R1= 0. In the case of harmonic external excitation
Rzeiwt, we cast the problem into frequency domain and represent
“' | With no damping ( C=0 ), the

?1gebraic equation for obtaining the amplitudes appears as

the resulting motion law as Ue®

Dii D12 U1 = O (1 3)
D,, D U R

z1 22 2 2 %

where D = K - « M is the dynamic stiffness matrix.
The effective dimension of the system is reduced by
rearranging it to the form

W= ’ (1.4)

2 2
= x =1 poe
Where " =DoE= DAl A, 28 8 g5

The matrix M~ corresponding to the dynamic matrix D* is

obtained by the relation [27]

7/ - § . gk -
i a( 2)D*: M, o-D, D MM D, DD, DM DD (1.6)
w

LI

\d the matrix K* - by the relation

B D® N, (1.7)
Finally, the reduced equation appears as
(K- M) U, =0 . (1.8)

It isn't a simple task to solve (1.8) , because the matrices
K*} M* depend upon the frequency » . In order to find the value

of the lowest eigenfrequency, the equation (1.8) is solved
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iteratively. At the i-th iteration the matrices K*(w), M*(w) are

obtained by substituting the value ©'° ' obtained at the

(i-1)-th iteration, [27]. As an initial estimate the value '~ =0
is regarded. The simplified approach to the mass condensation
considers the approximate values of the matrices K*= K*(O),
MX=M*(O). In this case the relation (1.6) in place of D employs K,

and the reduced equation is obtained as
;e T .
M'U,+ CU,+ K'U,= R,(t) , (1.9

where M* = TM 18 C* = @t e T b K = TTK T with the transforma-

-K (K
tion matrix T = [ o3 12] 3
ik

The value U1 is obtained from the relation
-1 i
Uy BT (1:10)

The shortcoming of the simplified approach is that the
obtained results can significantly depend upon the proper
selection of master d.o.f. thus requiring a great deal. of
engineering intuition.

Representing in the subspace of modal coordinates. It seems
more natural to reduce the effective number of d.o.f. by

presenting the equation of motion in modal coordinates . and

truncating the dynamic contributions of higher modes,
eigenfrequencies of which are remote to the expected vibration
frequency (e.q., substructure synthesis method [38]).
Simultaneously an account of the remaining quasistatic structural
compliance of the dynamically truncated modes is to be taken.
Consider the structural equation of motion (1.1) with -the

proportional damping, i.e., C = oM + 8K . As a result of solving
the eigenproblem

(K -wM)yU=0 , .11y
the eigenfrequencies o, i=1,n and the eigenvectors, ordered as

columns of the matrix A, are obtained. The transfer to modal

coordinates is carried out employing the substitution [44]

Bima 2 (1.12)

‘- coordinates takes the form

2
wl
we present the vector of squares of eigenfrequencies as S

]

and the matrix of eigenvector: as A = [Ax'Az]' where the
submatrix A, and the subvector w, correspond to the truncated

‘modes. After the truncation, the equation (1% 1)eyin modal

Il
D>
o

Iz, + diag( ) z.+ diag]) 2,

|
>3
e

diag(wz) z, =

where diag( “1)’ diag(wf), diag(wi) denotes the diagonal matrices

2 2 . v "
b nals an
containing the vectors Hor @, and w, on their main diagonals, d

the equalities diag(p, )=4;CA,, di%(wf):A:K Ay diag(ws)=a KA,
;are held.

The system (1.13) is the reduced one with regard to the
original equation (1.1). The dimension of the first equation of
(1.13) is the same as the length of the vector 2 . From the

- second equation of (1.13) the quasistatic correction caused by

the remaining structural compliance of the truncated modes is
obtained.

It should be noticed, that formally (1.13) can be obtained
jn place of (1.12) employing the substitution

NGzt A7, &2 Ay 7 ok Uit il =tz U=24a2 . (1:-14)

Up to now it was assumed, that all the structural modes are
obtained. In fact, it isn't necessary to determine the higher
s

_modes @, , A, explicitly. By multiplying the first relation of

1¢1:14) by A;K and by A:K on the left, z and Z, are expressed from

the obtained relations as

24

dleg( 7,2 ) AR U (1.15)
4

N
I

aisg( '/,2 ) A3K U . (1.16)
2

By multiplying (1.15)" by A |, and (1.16) — by 4, on the right




hand side and expressing Z  and Z, ., we obtain
U= [adiag( '/ 2 ) al +a,aiag( '/ 2 )al KU . (1.17)
5 2
From (1.17) follows the relation
N R S } A (1.18)
2 ag w, o 1 ag wx TR "
Denoting in (1.18) the right-hand side compliance matrix as

k

S, =K' - adlag( '/,2 ) al , (1.19)
1i

~

the quasistatic correction of displacements U is expressed as
= Sk REGY - {120

In the case of singular stiffness matrix the relation (1.19)

can't be applied directly. In order to determine S, without
obtaining higher structural modes, the approach proposed in [38]
can be applied (see appendix 2).

1.2 REDUCTION OF NONLINEAR STRUCTURAL EQUATIONS

Representing in the subspace of modal coordinates of a 1li-"

near part. Consider the structural equation of motion
MU+CU+EKU=W(U U)+R(t) , (1.21)

the only difference of which from (1.1) consists in the presen&é
of a nonlinear function of displacements and velocities on the
right hand side. The equation (1.34) is represented in a subspacé

of modal coordinates similar to the equations (1.13) :

121+diag( ui)éﬁdiag(“i)zf AIR(t) + AIW(A‘Z1 ﬁ, Aiéi), (1.22)

U= S, (R(t) + W(a,z,+U, 4,2, ).

In general, the equations (1.22) aren't independent because

of the nonlinear function W the a right-hand side, therefore thé
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system (1.22) hasn't essential computational advantages in
comparison with the original equation (1.21). Only when the
resonant structural vibration takes place in the range of the
lowest eigenfrequencies, we can simplify the equation system by
ignoring the function W in the second equation of (1.22). In this
case ﬁ is expressed from the second equation of (1.22), that is
linear now, and the first equation of (1.22) represents the
reduced dynamic equation of a nonlinear structure. The afore-

mentioned reduction is based upon a supposition, that higher

harmonic components of a nonlinear force W(U(t),ﬁ(t)) in the
range of eigenfrequencies of truncated modes are comparatively
small, and the lower harmonic components don't influence
significantly the generalized displacements 2, s

If the nonlinear function is continuous and depends only
upon the displacements W(U), the structural equations at each
time point t can be presented in the subspace of the modal
coordinates of a linearized system [32] obtained by solving the

eigenproblem

W >
[K—— ]—wM 3 ey (L m3)
au ¢

Obviously, the tangential correction of the stiffness matrix
used in (1.23) presents a better approximation in comparison with
the representation in the modal coordinates of the linear part
only. From the other point of view, the correction of modal
coordinates at each computation step is a time consuming
operation. In [18] the subspace of modal coordinates is
completed by the derivatives of the eigenvectors with respect to
ééheralized displacements in order to reduce the truncation
érfors, and enabling to keep the same modal coordinate basis
aﬁring several time steps.

Application of identification techniques. The equations of

motion in the subspace of the modal coordinates of the linear

part are presented as
Iz + disg(u) z+diag(w®) z= ATR(t) + a'W(az, az). (1.24)
Employing the identification techniques the function W is

replaced by the function
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W = Cj I(Zjilzjz) ’ i= 1rn ’ (1'25)

=t

and the subset of master generalized displacements Zjl'zjz"" is
determined. The parameters of the functional dependence (1.25)
can be obtained, e.g., employing the least squares approsch,
considering the values of the functions W and ﬁ at random values

of their arguments [29].

1.3 REDUCTION OF STRUCTURAL EQUATIONS WITH UNILATERAL
CONSTRAINTS

The structural equation of motion with unilateral

constraints we consider in the form

PU

IA
(@]

{ MU+ C U+EKU= BEE pers (1.26;

By representing the problem in the modal coordinates of the
linear part, truncating the dynamic contributions of higher modes
and employing the Lagrange multipliers (see chap.3.4 for details

we obtain the system

I 51 + dfag( u,) é‘ + disg(e?) z, = Al(R - P™2) ,(1.27.1)

]

disg(«?) z, = Al(R - P'A) ,(1.27.2) (f.27)

d .(1.27.3)

P Aizi =+ P A2ZZ o

The values of the Lagrange multipliers XA denote the
magnitudes of the normal interaction forces produced by the
constraints upon a structure. Only nonnegative values of these
forces are possible. Expressing Z, from the second equation of
(1.27) and substituting into the third equation, we obtain the

vector A as

x(z,) = (P S, P") " (P A,z +PSR-d,), (1.28)

and each component of X is replaced by 3
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{ xh gl e A Bl

0O , otherwise

Substituting (1.28) into the first equation of (1.27) we
.Gbtain the reduced equation of motion
Iz,+ disg( u)z+[ dlag(s) + AJPTAT'P 4 1z =
Ry I e Lk
= Ai(I -PA P S.) R(t) , (1.29)

£ - o
where A =P SkP , and P denotes the matrix P, from which the

“rows corresponding to the zero values of . are deleted That
" s

means, the matrix P represents only the constraints active at the
tiye point t . The dimension of the reduced equation (1.29)

SO is
equal to the 1length of the vector A

: 4 . The generalized
displacements Z, at each time point are obtained from the second
equation (1.27).

The equation (1.27) was obtained by truncating not only

“dynamic, but also dissipative contributions of the higher modes
In order to take account of the dissipative forces caused by the

inertialess motion of the higher modal components, the equations

of the system (1.27), beginning with the second equation, are
presented as
dieg( u,) z, + diag(wl) z, = AT(R - P"n) , 2 AT
S S PRRLE . =, (1.27.3)"
L) (i g}
Bal epriBagemgre 00 5 Vef 2, 5500 (1.27.4)*

Considering the numerical integration scheme it is

reasonabl i i
T e to suppose that the values of the higher derivatives

Z, are equal to zero during one time step. Assume the =zero

values of all derivatives of the second and higher orders
r

ARy Evwey

o= 2= ... =0 . After differentiating the second equation of

(1.27), we eliminate 2 Z, from the obtained system. Derivatives
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of the external force R is assumed to be R = R = 0 After some

manipulation we obtain

Az, 98, Y AT A o OB PN PR3y

where B = P SDiPT, S, = A, diag( HZ/wz ) A; , and the values of

the components of the vector A obtained by the relation (1.30)
are replaced by

)\‘!
)\‘;:{L
Qs

if the value A >0 was obtained from (1.30) and
Fxrom i(1.28) -, * )
otherwise

)
If we assume the zero values of the derivatives Z,
3D (4)
beginning with =3, i.e., Z,= Z,=-.. =0 , the relation . for

obtaining X takes the form

B Y YR s Bl Pz Bk BA P Az

-BA'PAzZ-d+PSR), (1.31)

2
where B,= P S__P" and Sp.= A,diag( Hz/w: ) A;

The matrix A:PTA_iP A, appearing on the right hand side of
the equation (1.29) can be regarded as a complementary stiffness
matrix. Its presence explains the elastic behavior of the
structure interacting with the constraint, regardless of the
local contact conditions. Similarly, substituting the relations
(1.30) and (1.31) into the first equation of (1.27), we obtain a
ATPTAT'BAT'P A and a

1

complementary damping matrix

complementary mass matrix AIPTA_i(BiA_1B1+B2)A_1PAX.
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structures with viscoelastic rheological models of the normal

impact are presented by the following equation of motion with the

constraints:

Mi}+CfJ+KU

1l

R(t) ,

c).(+kx 0 ’

PU+QX5dO ’

LA &5

PU4 QX = dL o L Sl i
where C, K - damping and stiffness matrices or scalar
coefficients, X — displacement vector or a displacement of the

rheological model, Q - constraint matrix or coefficient.
The system (1.32) is represented in the truncated modal

coordinates of the linear part as
i : S A 2 ' i <
LZ ¥ diag( ;Ji)zi+a1ag(wi)ziz A, (R- Py, .
. i = T
diag(e])z,= (R - P'A)

) b WX = el ; (BT

1]

ERALe P A ZMGE QX=1d, )

{ G Rl | el 2 (4 1
& PE{S o ML
Bl R R A 2 Ve =0 , '

Eliminating Zz,iz,X,X from (1.33), we obtain the relations
similar to (1.28), (1.30), (1.31) for determining .A, where the
matrices A, B,, B, denote

g ps F wakd,

w
~
~

Biia i e TR i K (1.3

5t 1 D1

BE-Pe P sQklckek'q

2

In the case of the absolutely rigid local contact condition
( k>» ), the relations (1.34) coincide with those presented by
Ay B, B

2 *
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Structures with the oblique impact and sliding friction

interaction points. The dynamic behavior of such systems is

presented by the structural equation of motion with the

constraints
MU +CU+RU=R(t)
T P (1.35)
PU=0

Each element of the matrix product PNU denotes the relative

displacement of contacting points in the normal direction to the

contact surface, where each element of the vector do represents
the initial clearance between these points in the static
equilibrium state (the negative value denotes the preload). The

corresponding elements of the matrix product PTﬁ denote - the
tangential relative velocities of contacting points. They must
have zero values until the tangential interaction force doesn't
exceed its critical value.

Presenting the equations in the truncated modal

coordinates and employing the Lagrange multipliers, we obtain

-

. i ; _ » 5 g X
Iz, + diag( w, )z +dlag(e )z = A (R B Bt

. T T T
diag(esyz,= & (R = Box = BaL) ,

av]
>
N
4
o
Z
>2
N,
N
N
Il
o}
~
(7%
(9]

The values of the Lagrange multipliers X, Ap denote the

magnitudes of the normal and tangential interaction forces
produced by constraints upon a structure. The normal forces . are

allowed to acquire only nonnegative values %NJZ 0 ,  and the

absolute values of the tangential forces don't to exceed their
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critical values, i.e., |KTJI = erNj, where kr - the Coulomb
friction coefficient., At the time point when the sliding in_ the
i-th contact pair ceases, the values of the generalized

displacements ij' 2 are denoted through 2z I 2 B EEN .

AT, :
the ;j-th contact pairjsliding takes place, tgzjvaluzzjzioj, Z2Oj
are updated at each time point. On this account we make the
following definitions. Assume that the matrix PN contains only
the rows PNj, corresponding to the active constraints (i.e;,
having positive normal interaction forces kNJ> 0 ). The matrix PN
denotes the matrix formed from the rows of the matrix P as
follows: each row PNJ corresponding to the sliding contact Apair
Lize., |ij|£erNj), is replaced by the row PNJ+PTjkrSignx

A

ot
otherwise, it remains unchanged. The matrix PT denotes the matrix
B,
and sliding contact pairs are deleted. In a compact form it is

‘ from which the rows corresponding to the inactive constraints

presented as

i MY - W
Ng
0 , otherwise ;
ﬁ o { PNj, : 1t & [xTJ| & kfoJ ;
11 . y
PNj+ PTka81gn Ar; » otherwise ;
ﬁ » PTJ, if XNj>O and [ijl < kfoJ,
Tj 5
0 , otherwise ;
e P = P R R A | A e T e T N
N N »
s L PR e pe g
PT PT )\T PTJ( & Zioj + A2u20\’
Taking account on the notation introduced above, the
"relation for determining A is obtained as
15y = g = o
A= (ST E S EA ap St il g (1.37)
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The actual impact and friction interaction points aren't
known in advance, therefore it is necessary to iterate at each
time integration step. The X value from the relation (1.37) is

obtained in by the following algorithm.

Algorithm 1.1

1. Include all the constraints into P, P.. Assume
_ = P
P =p=| "
P

2. Substitute the values of X ,x obtained from the relation

7 -rl
(1.37), into the first two equations of (1.36), and

obtain the value Z by numerical integration.

L +AL

3. Determine the values 2, A, at the time point t+at

T
substituting the value Zz, into the relation (1.37).

Lt +AL

4. If among the obtained values of elements of the wvector X
there are any kNJ< 0, delete the corresponding rows from

the matrices PN " PT

If among the constraints there are any violating the
constraint PNj( L e R 0 , place again the

corresponding rows into the matrices P, P

Redetermine the matrices P = P

£

5. If there are any changes made upon the matrices during
the step 4., go to step 2.
Otherwise go to step 6.

6. If among the obtained values of the elements of the vector

A there are any satisfying the inequality [x TJ = P%k

T Nj
replace the corresponding row of the matrix PNJ by
(PNj+PTJkrSign XTj) and delete the row PTJ from the

matrix P,

If among the contact pairs assumed to be in a sliding
condition during the previous iteration there are any
L+AL—ZL) >0 ae,

the obtained friction force vector points out at the

satisfying the inequality XTJPTJA(Z

38

g0

direction of sliding), replace the corresponding rows

i

N7 PTj by their original values.

Make the corresponding changes upon the matrices P, §

If there are any changes made upon the matrices PN,PT
during the step 6., go to step 2.
Otherwise case go to step 8.

~

For the tangential forces absent in the vector Ap assign
the values A, = % KX .

Update the values Z,,,= Z, ... 2367 wedzoino ! wor

all the contact pairs where sliding takes place.

Go to the next time step t+at
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2. DYNAMIC ANALYSIS OF LINEAR ELASTIC STRUCTURES

Structural motion laws are obtained by integrating directly
the equations of motion or employing the techniques based on
integral transforms. The latter way leads to the presentation . in
time domain (Green's functions approach) or in frequency domain
(Fourier series approach).

A direct numerical integration of equations of motion are
the main techniques for obtaining structural motion laws. Various

criteria are employed when selecting a time integration scheme

for a given problem. For obtaining motion laws in the
low-frequency range of an eigenfrequency spectrum implicit
numerical schemes are preferable. Together with the often

employed accuracy, stability, period elongation and numerical
damping criteria, convergence of the matrix algebraic equation
solution at each time step and overshooting at an initial stage
of integration are considered. There are several approaches' for
obtaining numerical integration schemes, of which a truncation of
Taylor series with the last retained term correction, weighted
residuals, finite elements in time are considered below. Each
approach produces a family of time integration schemes, among
which many of the commonly employed numerical schemes can be
found.

This chapter contains the systematic presentation of linear
system numerical integration schemes and can be regarded as an
overview. However, linear system time integration principles
presented in this chapter further are employed for obtaining the

nonlinear system integration schemes.
2.1 DIRECT AND INDIRECT METHODS

The equation of motion of an elastic structure is

considered as
RO 40D B0 SRty (2.1)

where M, C, K - mass, damping and stiffness matrices each of the
o

dimension nNxn , R(t) - external force vector, U, U, U - nodal

displacement, velocity and acceleration vectors each of the

dimension Nx!1, where N — number of d.o.f. of the structure. Tt is

necessary to obtain a motion law of the structure, i.e., the

.solution U(t) of the equation (2.1) , with prescribed initial

conditions U(0), U(O) and excitation law R(t) . This problem can

be approached directly or indirectly. The direct approach implies

"numerical integration of the equation of motion, and the indirect

one is carried out by presenting the problem in time domain

“(Green's functions method) or in frequency domain (Fourier series
“‘method) .

The direct integration method employs directly the equation

Voﬁ motion (2.1). It is discretized in time and the values of the

vector U at time stations t,t+A%, ... are obtained by
interpolating the values U(t) during the
FERCI=DAT, TEIAT TR IR0,

The time domain approach, or the Green's functions method,

intervals

presents the dynamic response of the structure as a superposition
of responses to the unity pulse excitations é(t*,t), Fig.2.1,
where the values & at time points (i+iAtf) are defined as

( i
-J+1+ — , if (DR SERRE EJATT,
AT
S(jat, ) =4  Jei— —t— sk AE 9= G ) (2.2
A
0, otherwise.

5

The transient dynamic compliance matricx S(i) of the
dimension NXN is obtained by integrating an equation of motion

with N right-hand side vectors:
M .S HICES 3 'S = 8@, 1)L (Z3)
with the initial values S = 0, S = 0, where T - the unity matrix

of the dimension NXn . The matrices SUO, SU0 containing in their

columns the solutions of the homogeneous equation with unity

initial values, are obtained by solving the equation

¥ 57 g% 8- (2.4)




with the initial values SZOZ e SZO: 0, and the equation

WS+ B8 o KB 1 O (2.5)
with the initial values S. =0 , S.'= I
y ua vo 4 2
The matriees SicasSh i, S define completely the dynamic

behavior of the structure. If they are available, the dynamic

response of the system to an arbitrary excitation can be obtained

without employing the equation (2.1). The displacement vector
UkAL at an arbitrary time point KAt is obtained employing the
relation
3 k
uo 15 {0 B BT
UkAL: SkALUO + SkALU0+ }_ﬂ S(k—j)ALRjAt : (2.6)
J=1

The matrices S, SUO, 38”? can be obtained by integrating the
equations (2.3), (2.4), (2.5) directly. However, the elements of

these matrices can be obtained experimentally, too. The element

SLj can be considered as a response of i-th d.o.f. of a structure
due to an excitation of j-th d.o.f. at the time point T = 0 by
the pulse of the square At, where AT - the time discretization
step.

The time domain approach reduces the computational effort in
the following cases:

1) when it is necessary to obtain a dynamic response of the
same structure to a number of different excitation laws;

2) when it is necessary to obtain a dynamic response of ‘a
few specified d.o.f. due to a given excitation at a few specified
d.o.f. In such case it is necessary to know only those dynamic
compliances SL,' the numbers of columns j of which correspond to
the nonzero excitations, and the numbers of rows 1 correspond to

the d.o.f. under consideration.

The frequency domain approach assumes the presentation of an

excitation force as well as of a structural response as Fourier

integrals
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' for all the values of w < [0,] ,where K = {

(o]
R(t) = J [ Ryt duibqay et bl ; 2.7)
o
(o]
U(t) :J [ U () - iU, (w) 1 6 %' do . (2.8)
o
S Substituting (2.7), (2.8) into the equation (2.1), we obtain

w0

w
J (= Mo®+ ieC + K)(U_- iU.) e"“"do = J (R, - iR ) e'“"du . (2.9)
o

Q

Equating the real and imaginary parts on the right- and
left-hand sides of (2.9), we obtain an algebraic equation system

in terms of the amplitudes U, U as
s <

i il R,
o X R

wo [ Rz 7ML @G
s Tl s o

Having obtained the amplitudes U (w), U (w) from the
< -
equation (2.10) an substituting them into the relation (2:8); _a
time law of a structural response is obtained.

The matrix K is the dynamic stiffness matrix at the harmonic

=t

excitation of the frequency « . The matrix XK is the dynamic

i.compliance matrix, each element (K—i)‘LJ of which can be obtained

experimentally, too. Its value equals to the harmonic vibration

.amplitude at i-th d.o.f, due to the unity harmonic excitation of

the frequency » at the j-th d.o.f.

The frequency domain approach reduces the computational

‘gffort in the following cases:

1) if it is necessary to obtain a spectrum of a structural

response;

2) if the spectrum of R , and consequently the spectrum of
U are discrete and finite, i.e., the integrals (2.7), (228" Peéan

be presented as truncated Fourier series
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R(t) = }— T RO (R i N (2.11)
i=1
N

U(t) = } Gl e A YT (2.12)

where the number N isn't very large. Only periodic functions
possess such a spectrum, therefore the frequency domain approach
is preferable for obtaining a periodic response to a periodic

excitation.
2.2 CRITERIA FOR SELECTING DIRECT INTEGRATION SCHEME

Let's consider the matrix equation of motion (2.1). A direct

numerical integration of this equation means obtaining the values

of the vector U at the time points 1,t+AT,t4+2A%,... by
appropriately interpolating the values U(f) during the intervals
[(i-1)at, iat], i=1,2,... . Further we denote U(iat) = U.LAL 5

Let's consider the single-step schemes, defining the values

w

U U U at the time point t+A1 employing only the

LA ST

w
b UL,... at the time point t and the equation of

b RALT Lt+AL !
values UL, ﬁL
motion (2.1). The multi-step schemes employing the values at
several previous time points T, t-aAt, t-2At,... for obtaining the
values at the time point t+At at present aren't very popular for
integration of structural equations of a large dimension because
of greater amounts of computer storage in comparison with the
single-step schemes and the necessity to obtain the start values
U—At'U—zAL""
equivalent single-step schemes can be obtained.

Moreover, for the majority of multi-step schemes

There are explicit and implicit direct integration schemes.
Assume the matrices M and C of the equation (2.1) being diagonal.
An explicit scheme presents the relations for obtaining ‘the
values U _,, and its derivatives from the values U2 endiits
derivatives in an explicit form, i.e., without solving an
algebraic equation system or employing a matrix inverse. The

1schemes that don't match this requirement are considered as

implicit. However, explicit algorithms don't possess the

unconditional stability property and are therefore of a 1limited
use.

The structural dynamics problems should be partitioned
depending on the relation between the spectrum of excitation and
the spectrum of eigenfrequencies:

1) obtaining stationary motion laws, when the dynamic
behavior 1is determined basically by several lower modal
components;

2) obtaining transient motion laws and solving wave
propagation problems, when the dynamic behavior is heavily
influenced by higher modal components;

The explicit schemes are best suited for the second group of
problems, defining the time integration step sufficiently small
to approximate the highest modal response and preserving the
dynamic contributions of all the modal components. For the first
group the implicit numerical schemes are preferable. Employing
the unconditionally stable schemes it appears sufficient to
define a time integration step sufficiently small to approximate
the highest Fourier component of an excitation law. In some
cases, e.g. [17], the implicit-explicit approaches are employed
in order to cope with the dynamic problems of the coupled
structures possessing subsets of eigenfrequencies severely
differing from each other.

The numerous explicit and implicit schemes had been
developed up to this time. In order to select a numerical scheme
for a given structural dynamics problem, accuracy, stability and
other asymptotic features of the scheme are to be considered. An

analysis of such features is carried out by investigating the

v“behavior of the scheme when approximating a free motion of a

structure, i.e., by integrating the equation (2.1) with the zero

" right-hand side. Presenting equations in modal coordinates as n

independent equations, the main asymptotic features of the

»numerical scheme are investigated by applying the scheme to the

equation of motion of an undamped oscillator as

11 s e = e (2:13)

o

or of a damped oscillator as




R T SR (2.14)

o

An arbitrary single-step scheme applied to the equation
(2.13) or (2.14) can be presented as

Ly eaL™ E Ty 4 (2.15)

u
where £ - the amplification matrix , and T = U, or T = [ u ]' on

u
r = ﬁ etc., depending upon the numerical scheme under
u
consideration. It follows, that asymptotic features of a numerical
scheme applied to the equations (2.13) or (2.14) depend only upon

the features of the matrix E , because after N steps the equality

N e S
B ARST plaal b (2.16) v
takes place.
It is known that
L g Mgl (2.17)
1 1 L
where X 5 Bv= the i-th eigenvalue and the i-th eigenvector . of

the matrix E [26].
An arbitrary vector r, can be presented as a superposition

of eigenvectors of the matrix E ,i.e., as
il
AT T (2.18)
i1
wherewdid = wdimension ..of «ithe. matrix ;E ,.  and BL~ weight
coefficients. i
By substituting (2.18), (2.18) into (2.16), we obtain
1
r TR P (2.19)
t +NAL o & i i i 7
=i L

It follows, that for long time intervals [t, t+Nat] the
asymptotic behavior of a numerical scheme is defined by the

magnitude of a spectral radius of the matrix E

Stability. A numerical integration scheme is stable, if
the obtained solution of the homogeneous equation (2.13) or
(2.14) is limited at arbitrary initial values. It follows from
the relations (2.16), (2.18), that the stability is ensured if
for the spectral radius of the matrix E the inequality

P d, (220)

is held, and the multiple eigenvalues satisfy the inequality

NEEE (2.21)

A direct numerical integration scheme is unconditionally
stéble, if the solution of the equation (2.13) is 1limited at
arbitrary initial values and at an arbitrary value of an
integration step At . If stability is obtained only by defining
thé certain values of a time integration step, an algorithm is
conditionally stable. The stability of the numerical scheme
means, that the numerical round-off errors aren't accumulated.
The unconditional stability means, that the solution remains
limited at an arbitrary time integration step, even exceeding the

free vibration period T = gﬂ . In this case a magnitude of an
o]

integration step is defined in order to obtain a satisfactory
approximation of the highest Fourier component taking an
appreciable part in the response of the structure to a given
excitation. The contributions of the higher modal components are
filtered because of the unconditional stability of an algorithm.

Amplitude decrement and period elongation caused by a

numerical scheme applied upon the equation (2.14) can be regarded
as a measure of a non-coincidence of the amplitude and phase of a
motion law produced by the scheme with those of the exact
(analytic) solution during a sufficiently long time interval
[t, t+Nat]

Assume A = & * ib as a pair of conjugate eigenvalues of the
matrix E , and present the solution of (2.14) in the complex

pPlane, Fig.2.1. The two complex magnitudes UL and U represent

L+AL
‘the amplitude and the phase of the vibration at the time points t

and t+At. without loss of generality they can be regarded as

subvectors of an eigenvector &6, of the matrix E, and, analogous

to the relation (2.16), we obtain




- O
S

Fig.2.1 Bnit pulse

Fig. 222 pisplacement vectors on the complex plane at the time
points t and t+At
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U, AU

VRALT iE

(RLER)

1 2% vy ! b
¢ o=Lbnita lab L), ok Lanetigs 1)
where X = € 2 a
At the same time the analytical solution of the equation

(2.14) is presented by the relation

=i . &ry 13AL

U e ' (2.23)

AL t

2 2
where w = on— huas

From the relations (2.22), (2.23) we obtain, that during the
time interval of the length At the relative error caused by a
numerical scheme equals

(iL (4 2+b2>+hAL+’r§ gy At +igAt
= n a 1 ow! < e .
2 =1-e"” > 0(v)+i0(e)

i-e ; (2.24)

where & = arctg g

The order of the relative error (2.24) can be obtained by
employing analytical expressions for » and £, and O(r) and O(e)
represent the amplitude and phase errors.

The value & can be expressed through the distorted (i.e.,

numerically obtained) vibration period as

FUL ZHAt/E ¢ (2-25)
or
et & (2.26)

The vibration period, in accordance with the analytical

solution, equals

oo L8 ; (2.27)

w

Expressing as a percentage, a period elongation produced

by a numerical scheme is obtained as

gy

VoI Mot T 17 i (2.28)
T
and an amplitude decrement - as
1Lh( 2+b2)+hAt hAt
100 ¢ 1-efz'n® Pyoe 100 ¢ 1~ ey, (2.29)
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According to the stability requirement || < 1, the relation

(2.29) enables to evaluate the numerical damping feature of a time

integration scheme. In the case of an undamped oscillator (h=0)

the relation (2.29) defines in percentage the decrement of free
vibration amplitude during one period caused by the numerical
damping feature of a scheme. If the numerical damping is

considerable at the values AL >> 1, the contributions of higher

Fourier components to the system's response are suppressed
algorithmically. )
The accuracy order of a numerical scheme for an undamped

oscillator equation (2.13) is obtained by comparing an analytical
solution with the numerical one during the time interval

[t,t+At]. The relation (2.15) is presented as
(32203
Uy 4 ae L

The matrix EO in (2.30) is obtained by solving the equation

(2.13) during the time interval [t, t+At] as

Il

u i
(E,+E, ) [Ut] > (2.30)

w

E, = (2.31)

o

[ sinwat coswAt ]

CoswAt —wsinwAt

The matrix EL contains the first expansion members of an
error caused by a numerical scheme. It is obtained by expanding
the elements of the matrix EO into the Taylor series and
subtracting the corresponding elements from the elements of the
matrix E. In general, the matrix E is presented as )
a bAt}

’

(2.32)

b O(Atp+i)
cat d

where the values of the coefficients 8, b, ¢, d depend wupon a
given numerical scheme. The matrix E is called compatible with
the matrix E , if p 2 1 in the expression (2.32). The number p° is
an accuracy order of a numerical scheme defined by the matrix E.
"Overshoot" feature of a numerical scheme denotes its
capability to produce excessively large values of a response
during the very first stage of time integration. When applying
the relation (2.15) at the time points t+aAt, t+2at,...,t+Nat, we

50

obtain
N

T = FE T . (2.33)

t +NAL t

Considering the norms of vectors and matrices, it can be
stated that

bl W e e ol ey (2.34)

From the inequality (2.34) it appears that the value of the

norm of the matrix E presents a more severe restriction, than the

spectral radius (see the inequality (2.20). Ifp < 1 , it is
ensured that lim ”ENTH = 0 . But when N isn't large, this norm
P N

can be large, and excessive values of | | may be obtained.

L+NALI
Therefore, irrespectively of a circumstance that the asymptotic
behavior of a numerical scheme is governed by the spectral radius

of the matrix E , the values |r for small values of N

th venal
depend upon the value of the norm of the matrix K. The matrix E
satisfying the stability criteria (2.20) can possess an arbitrary
large value of the norm.

Convergence. In order to obtain the matrix E for implicit
schemes, it is necessary to invert one or several times the
matrix of the dimension equal to that of the equation (2.1). From
a computational point of view, it appears reasonable to present
the relation (2.15) as

Qe — R

A L AL o t

: (2.35)

where no matrix inversions by obtaining the matrices E1 and Eo
afe;employed. For obtaining A from the equation (2.35) the
iterative linear algebraic equation solution algorithms may be

adopted as follows:

k+1 lic
R e R O ) e

(2.36)

whgre K - the iteratiorn number. The convergence of the iterative

scheme (2.36) is ensured, if the spectral radius
et L= E Y=ol 8 (2 Ee)

The inequality (2.38) is regarded as the convergence

condition of a numerical scheme.
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2.3 SINGLE-STEP NUMERICAL SCHEMES
2.3.1 Weighted residual approach
Let's consider the equation of motion (2.1). During the

time interval [{,t+Af] the time function U is approximated by ‘a

p-th order polynomial as

-1
—  a iq 3
¢ T
U = S ULQT + aip)ﬁT ” (2.38)
5 a‘u Fou
where U = — .
dt®
The relation (2.38) contains the p first terms of the Taylor
P
series expansion of the function U , and the term aip)%T
approximates the residual term of the expansion. Assume the

p-1

, U _at the time point t known. Employing the

values UL, UL,...

relation (2.38), we express the unknown values of UL+AL,

& p=1
UL+AL,..., UQ*AL at the time point t+At in terms of the unknown
values of aip) as
X __1' e Atq_k (p> Atp—k : (p> Atp"k
e e U, = ey T =, e PR (2.39)
q=k
for' ald’ ‘kp= G,p—1.
The wvalue of azp) is obtained employing the weighted

residual approach. Substituting the relation (2.38) into the

equation (2.1) we obtain

&

RS R G R R T (2.40)

o— b

where W — the weight function.

Defining
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At At
[ wteat J WRat
° =e.at? , q=T,p ,(2.41) ; ————— =R, (2.42)
f wdat f wdt
o o
where e = 1; k< SqS 1 , we obtain
At k
f wuat -1 g Lo ol
) L % il ¢ AT
Tl UTgmT Cast 27 prRIT Ok ¢ KTITPETY. (2.43)
I7% g
At
Dividing the equation (2.40) by J.Wdt, we obtain
a
[ :l q Atq_z - Atphz ]
M -~ Ut?—Eq— T Cq-2t &, D=2 I
L =2 J
[ p-d a -1 ]
- At Atp—i
+ @ _‘Utmeq_1+ C‘zp)'@T‘[‘)Tga—i +
L q=1 )
( i' 2t o il b
+ K Ui+« 2 e | -R=0 . (2.44)
L q=0
From the equation (2.44) the vector a‘p)is obtained as

Sk v

p-

2

A
o = [ =237 spazM - P-TyT ep‘ic + gt spK ]

(R "E’HAL C[NJ“AL— KGHM) 2 (2.45)
. Al X 3
where U,  , = - ULQ%T— 8 v Busnn® ﬁtﬁé; o
q=0 q=1
oy oRaia) g0
Phocanis f o NTaEmT Sankis (2.46)
g=2
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The p-th order algorithm SSpj is completely defined by the
relations (2.39), (2.45), (2.46) [46]. The number j denotes the
equation order, and for the equation of the second order (2.1) we
have J=2. The values A k=U,p-T are defined by a selection of a
weight function W , and their values are defined in order to
submit the desired features to the numerical scheme. The p-th
order numerical scheme starts with the prescribed values of the

vector U and its (p-1) derivatives at the time point 1t=0, i.e.,
X

with the values Uo' sz,p— :

Algorithm 2.1
q

~

1. Obtain UuAt from the relation (2.46) employing the
q
already known values Uz’ q = U,p~ "

2. Obtain az‘” from the relation (2.45).
q
3. ‘Obtain Uuﬁtfrom the relation (2.39), q = U,p-

4. Repeat steps 1,2,3 of this algorithm for the next
time step.

In order to obtain the load vector R from (2.43), it is
necessary to obtain the value of an integral in (2.43). However,
often the the load vector is prescribed only by its values at the
time points 0, At, 2At,... . It appears reasonable to assume the
linear variation law of R during the time interval [1, t+At], and
to replace the relation (2.42) by

Rimo R+ {1=673 RL 2 (2.4202

171+ AL

Employing the Taylor series expansion of (2.45) and ' the

equation (2.1), we obtain
(p) 2 c
a F'= U+ 0(at) , (2.47)

where the values at the time point { are supposed to be accurate.

Therefore the SSpJ numerical scheme obtains the values U Ay
(p-1)

AtU ALST U with an error 0(at™?*)y, and its

ke Y 2 S t+At
accuracy order equals D+1

The relation (2.15) for the SSpj takes the form

Ut+At. Ut
Ut+AtAt UL at
: = : - (2.48)
(p—1) S (p—1) S 1
U;*AtAt Ul AL
R e st |,
'where
; j EI sy 1/p!
0 1 1 iy 1 Ge i
s 0 0 1 s 1/(p=2)!
EP = (2.49)
0 0 0 q 1
b b b o b b
o 1 2 p-1 P .

2 2 2 2
and Db = w st 6, , b= 2h At 8,+ v At s, ,

) 2hate,  w At’e
b o k-2 o K-y 4 o k k:z,_p ¥
(k-2)! (k-1)! k!

Uat

pefining ™= 2 , the relation (2.48) can be
(p=1)

PETAE A

. presented as

(p) S (p) (p)
rt*AL Erl- Ero( rt
_____ = (2.50)
- (p) (p)
0 Ear i Eo«o« t ;

_where the matrix blocks E __, E__, B A are of the dimension

ol
pxp, px!, 1xp, 1X1 , as it follows from the definition (2.49).

The relation (2.50) transforms into the relation

(p) (p) (p) (6 - 10 IR N T | (pd
{rtfm} " [Er: 0l gl e ] {rL } . 2.51)

The stability, numerical damping and period elongation

features are defined by analyzing the spectral radius values of




the matrix in the relation (2.51).
The analysis of the numerical schemes of the first and
second order for the equation (2.1) is presented in detail in the

Appendix 1.
2.3.2 Generalization of the Newmark's scheme

Consider the equation of motion (2.1) and approximate the
U

U at the time point

values of the vectors U T L

t+At as

t+AL

_‘1 J“ Atm k m
Vo } t(J k)' + BT AU = 4 by AU, k=U; , (2.52)

m m m
where AU = Ut+AL— U, and B = 1 is assumed.

The relation (2.52) can be regarded as Taylor series
m

expansion up to the term containing U , and the remaining terms

Atm k m m Atm—k+1 m+4

o e Wewaemdhy ¥ = By U » 0.1 , (2.53)

can be regarded as approximations of the residual terms.

If = e k=0,m , the residual terms (2.53) are "the
m+4
Taylor series terms containing U . .However, in general

arbitrary values BL can be selected in order to obtain necessary
features of a numerical scheme (e.g., to achieve a compromise
between accuracy and stability). Substituting the relation (2.52)
into the equation (2.1) at a time point t+At, we obtain

MU atos g U

t+At t+At AL RL+AL

(2.54)

After some manipulation the basic relation for an m-th order

numerical scheme is obtained as

(DM, DO ALK Jal], = R

aeohind @R Cigy+ B9 ) 7a1 042 .55)

The m-th order numerical scheme starts with the prescribed

values of the vector U and its m derivatives at the time point

56

t=0. If at the time point t = 0O only the values Uo, Uo are
k
prescribed, it is necessary to obtain the values U0 from the
equations
k k-1 k-2 k-2
i e et 0 e ) G U gl o A= 0 . (2.56)
o o o o
Algorithm 2.2
1. Obtain the right-hand side vector of the equation (2.55)
RL+AL - (M qz -C qi - K qo) v

and simultaneously assign

k
K = Oh ..

L*AL Qi xe
2. Obtain AU from the equation (2.55).
x

3. Obtain the values of the vectors UHAL , employing the
relations
k ke m
UHAL = U0.+AL+ bkAU P K= 0.m

4. Repeat the steps 1-3 for the next time point.

Sometimes it may be preferable 1in place of the unknown

m s
vector AU in the equation (2.55) to consider the vector AU (if
s = 0 , the displacement vector is regarded as an unknown). In

‘order to substitute the variables, the relation (2.52) is cast to

the form

m s

AlJE =ssgoulliics o £ R TopR =& (2.57)

The equation (2.55) preserves its form, if in place of bk i

q, we consider bf £ qf , k=T,m defined as

B ie b fbpteidglesagt-religtign ReT7W . {2.58)
X
The relations for obtaining UHAL at the steps 1. and 3. of
the algorithm 2.2 take the form
k e e
UuAc = {0 b}< AU, S =00, . (2.59)

(for K = s an identity takes place).

The relation (2.15) for the generalized Newmark's scheme
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is considered as

( t+ At it
t+ At t
g Rl T (2.60)
t+At Ut :
¥ 0 J = AU 3 ’
1 1 1/21 1/m! Bo/mt
OF 1/¢m-1)1 Pe/(m=1)1
w [0 0 1 L0 17(m-2)t Paz{m-2)
B o (2.61)
O R g S 1 {74
d, 4, Ay .. dq d.. | .
where
1 2h &
d,= @5, d,= 2h/at + o), d=— + s e P
el WY S ERY 3t
w;
a_, =— i + o + “of’ ‘
At (m-2)!  At(m-1)! m!

In the Appendix 1.2 an influence of the values of 3. upon

i ;
the accuracy and stability of the numerical scheme is
investigated, and the relation of the presented scheme with other

well known numerical integration schemes is shown.

2.3.3 Reduction to the first order system. Finite elements

in time
The equation (2.1) can be presented as a first orde£
differential equation

X=A+P, (2. 62)

MO EMTTE M ‘R
where A= , P =

I 0 0 u

Consider the values of the vector X and it s derivatives up
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to the p-th order at the time points t and t+At , denoting them

as X_, Xo,...,;o (at the time point t ) and as X, ki,...,;i (at
the time point t+At ). The value X, at an arbitrary time point
within the interval 7 < [ t, t+At ] can be expressed through the
values of the vector and its derivatives at the begin an end
points of the interval, employing a set of orthogonal functions
defined within this time interval. Let's employ the Dp-th order
(p=0,1,...) Hermitian polynomial family denoting them as 3:1,
k=0,p, J =0,1, containing the (2p+1)-th order polynomials.
Denoting fi%f , they are presented explicitly in the Appendix 1.3.
The value of X at an arbitrary time point within the

interval v<[t,t+At] is interpolated as

ke X
X, =) X ) £ X3, ) . (2.63)

k=0

In fact, the time intervall 1, t+A1 ] can be regarded as a

finite element in time with the nodes at the ends points of the
7 i

interval. The values Xo, Xi, s ;P should be regarded as nodal
values, and the Hermitian polynomials BEj s K=0p . J=0,1 =" Tas
form functions. Substituting the relation (2.63) into the

equation (2.62), we obtain

E. oo k s 2 k x P
}__‘[XOB:O(T)+X13)<1(T)] = A Z[Xﬁio(”“&%(f) +
k:o k:O

+ P(r), = e [t, t+at ] (2.64)

Employing the weighted residual approach, we require the
zero value of an integral

multiplied by a certain weight function

At

J‘N(?»—(F)c&? 0.,
o

where W(r) is a weight function. Let's employ the &-function
W(T)=6(T-(t+7)) as a weight function. Such weighting is called
collocation at the point t+7, and the equality
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At

V[é(r—r—t)p(?)d?:p(r+t) takes place. The =zero value of the

(o]

weighted residual p(t+1) is obtained by selecting the values %,
1

i= U,p in the (2.64). Differentiating K times the equation
"
(2.62) and expressing the derivatives X through X , we obtain the

relation ¥

k

(k> (L)
j k-i
X =AX+ At v Bl oy k=0,p . (2.65)
k=0
Substituting (2.65) into (2.64) and considering the obtained
equation at the collocation point 7 = £A%

kK
~ g _L(L)
}_‘{p—AE ][Akxo+} A" P} +
& ép » 3 1(__L(‘L)
}__ e T > ASAP: |o= Buiws 1422660

From the equation (2.66) the vector X, is obtained employiné
the known values of Xs and the load vector Q . The vector Xi is
obtained from the relation

, we obtain

B,x = Bk e B

- K S 2p+1 0" O p+1 ’ (2-68)

where

R, Eﬂ ép 3 X
Zped 4 Tedas A aki A ’

k=0

Zp*i

H[ BL’O] K + (2.68)

=
[—A3J§_‘ ]

Usually the excitation values are interpolated linearly
during the interval [t, t+At], and in the relations (2.68) in

O

2p+1
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Kk
(G0
place of the term } e ‘P the term (1—{)? = EP (1E k=1 and
= k-1 1:1 k-2 Pi— PZ
the term A [(1~E)Po+ :PJ + AT (if k=?2) can be
) AL

employed. The amplification matrix E of this algorithm is

obtained from by the relation

E-gerBiteg iy o (2.69)

The formulae of the numerical schemes of the 1-th, 3-xd,
5-th: order are presented explicitly in the Appendix 1.3.

Now we investigate asymptotic features of the numerical
schemes presented in Chap. 2.3.1, 2.3.2, 2.3 .35:.The |results
presented below are taken from [1].

In Fig.2.3, 2.4 the numerical damping and period elongation
characteristics obtained by the formulae {2.28); (2.29) are
presented. The curves 8 in Fig.2.3, 2.4 correspond to a damped
oscillator case at the value h = 0.5 . The negative values of the
numerical damping signify the amplification of oscillations with
regard to the analytical solution. In Fig.2.5 there are presented
the values of the norm of the amplification matrix at the first
time integration steps at wAl—w .

The large values of the norm of the Newmark's scheme
ampiification matrix are caused by the value p = 1 of.+diks
spectral radius. However, this circumstance doesn't imply
overshooting of the displacement values due to a lower triangular

form of the matrix at the values wAl — o« taking the form

g piA\g
Ao |2 -1 1.0
BV

Obviously, all the exponents A" of the matrix A preserve the

lower triangular form.
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62

§
1-2¢" ==
D
2 / 6
3 1
7
| ‘ AN\
| 3 /// \/3¥
0 /< :
e s
| 3
0,01 01 1 10 wodt/2x
I Fig.2.3 Damping characteristics of some numerical schemes:
1 - Houbolt, & =2, 8,=11/3, 6_=6; ( 3,=6, B, =11/2548, _2),
2 'S cubic, €o=2]3; 3k Wilson, & =1.4, &= 1.4 e_=1. 4?

(3,=1.4°, p,= 1.4, g =1.4 ); 4 - Newmark, = 1—1/2;

, p=0; 6 — cubic, & =1; p=1; 7 - fifth order
2; 8-ss21, 8 =6 —1/2 for the damped oscillator;
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Fig.2.5 Norms of amplification
matrices of some numerical 5
schemes, notations as in Fig.2.:

3. TRANSIENT ANALYSIS OF NONLINEAR ELASTIC STRUCTURES

In this chapter the numerical integration schemes of linear
dynamic equations are extended in order to deal with nonlinear
ones. For the dynamic equations with a nonlinear term only
explicit schemes can be immediately adopted. Employing the
implicit schemes, the values of a nonlinear term are approximated
by means of extrapolation, or it is necessary to solve a
nonlinear algebraic equation system at each time integration
step. In time domain the dynamic response is represented by a
superimposing the transient dynamic compliances of the 1linear
part, regarding the values of a nonlinear term as external force
evaluated by means of extrapolation or by solving nonlinear
algebraic equations.

For the direct numerical integration of equations of motion
of the structures with wunilateral constraints case oriented
algorithms are developed employing the Lagrangian multiplier
approach and supposing the minimum work of interaction forces for
making corrections upon the velocities and accelerations when the
structure meets the constraint. A numerical scheme is presented
as an extension of the generalized Newmark's scheme. Equations of
motion of the structures with kinematic pairs interacting by
normal, oblique impact and sliding friction forces are presented
employing the constraints upon nodal displacements, velocities
and accelerations. Arbitrary values of the impact coefficient of
restitution can be presented by selecting appropriate right-hand

side terms of the constraint relations.

3.1 DIRECT INTEGRATION: SOLUTION OF NONLINEAR EQUATIONS AT
EACH TIME STEP

Consider the following structural equation of motion:
MU+CU+EKU=W(U, U) + R(t) . (3.1

The term W(U,U) in the equation (3.1) represents a nonlinear

part of the structure, signifying a vector of forces caused by an

“‘interaction of a linear structure with the surrounding or with
‘~:6ther bodies.
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Applying the m-th order generalized Newmark's scheme to the
equation (3.1), we obtain the relations similar to (2.55),
(2.57)-(2.59):

Dbl = oo +200 BT ik (3.2)

t+At t+AL t+At

X
Lol | q)c

(= it 5

X
= bk AUU-A!.

» kK =0,m . (3.3)

i X X. X
where A =DM + DC+ DK, G, =R, - (Mq-C%,-Kq),

X_ X X
D= dun Bors Bt e Tl B s MmOty b ) 4Bgpe -
TR R \
4 = Uz(J—Ej! » b= 8, @m-Kyr ° k=0,m s
£
3=k !

The value of the right-hand term Gc«

g5 at the time point

t+At depends upon the unknown values U“At, U“AL, therefore fgr

obtaining the solution of the equation (3.2) it is necessary to

approximate the value W(UuAtJa+AL) employing the values U, ﬁ at
the previous time points, or to solve the nonlinear matrix
equation (3.2) at each time point. The following approaches' for
obtaining AUt

Apmare possible.

Application of explicit numerical schemes enables to avoid

the difficulties related with the solution of the nonlineéi
equation (3.2), if the nonlinear function W depends only upon %hé
displacements U , i.e., if W = W(U). Setting the value of the
numerical scheme parameter 3 =0, we obtain U = q
] o t+At o
relation (2.52), and in place of (3.2) the equation

from the

(b,M + b C)aU_, =R _, - (M 0. it Culpt e Kada—sW (g ) ) (3.4)

is to be considered.

From the linear equation (3.4) the value of the unknown

m

vector AU“At is obtained. If the equation contains a nonlinear

term W = W(U,U) , it is necessary to present the equation (35.1)
in the form il
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. (3.5)

consfdering the vector X = as the new unknown.

Applying the Runge-Kutta schemes or the explicit versions of
the SSpj scheme (see Chap.2.3.1) to the equation (3.5) it isn't
necessary to solve nonlinear equations. However, a shortcoming of
such an approach is a conditional stability of a numerical
scheme. To be exact, an unconditional stability of an algorithm
applied to a linear structure doesn't guarantee the unconditional
stability when applied to a nonlinear system. It can be shown,
[1], that the numerical schemes unconditionally stable for linear

structures become only conditionally stable when applied to

nonlinear structures. Nevertheless, in many practical

applications nonlinearities don't impose such severe limits upon
the integration step, as an explicit scheme does. Therefore for
integrating nonlinear structural equations implicit numerical

schemes are preferable.

Pseudo-force approach. The vector W = W(U,U) is considered

‘as an external force vector acting upon a linear elastic

structure, and its value at the time point t+At is extrapolated

1inearly as

V,=2W -W

t+ALT

ik, e (3.6)

In this case there is no need to solve nonlinear equations.
The obtained numerical scheme, based upon the relations (3.2),
(3.3), (3.6), isn't cumbersome and can be easily programmed.
However, the accuracy and stability of such a scheme depends
significantly upon a nonlinear function. Therefore the
pseﬁdo—force approach is applicable only if the nonlinearities

‘are not severe.
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Tangential linearization. The nonlinear
considered as

equation (3.2)  is

F (aU, ) =0 , (3.7)

whece F(AUu-At) = A AUuAL_ C'u-Ao.— W U'.+AU1.¢AU{IL+A[.I¢+AL)

During each time step the function F is replaced by a li:‘lé;t

function of AU“AL, obtained by linearizing the function F at the

value AUnAc: 0 . This linearized function is presented as

Flrpioy g |addals U

a(AU t+At " (3-8) . <my

t AL> A =
* Ut+A0. <

It is necessary to obtain the value AU Al satisfyingmtljié‘._
equation .
B AUuAt) =N (3.9)

Obtaining the corresponding derivatives

o .
aF gy vyl ¥ aUu-AL o oF aUL-o-AL
3 AU F 3 ’
( t#AL) a(AUt+AL) a(AUuAt) a(AUL-e-At) a(AUuAt)
aUuAt b aUuAL
o - / 4
a(AUuAt) a<AUo.+AL) .
and having in mind, that A
oW & W W _ oW
a(al. ., ) SIHYYr! a(a % b
t+AL AU.'+A"=O L ( Uc +Ao.) AUL+A"=0 ou b=i"t ¥

the linearized equation (3.9) is presented as

~

A7.+A'. AU'AA!, o0 GL+AL + W( Ut’ {Jt) . (3.10)

B s 1o 2N Ot W g Ot it 2N o Eoeiiin 2 h
t+ At 2 1 o
alU i al :
U ,u LS 5 4

AL AR 2

The accuracy of the tangential linearization at evaluating

W

t+At
approach. However, in the case of severe nonlinearities the

is significantly better, than the accuracy of pseudo-force

integration step value must be sufficiently small in order to
obtain a satisfactory approximation of the nonlinear function
variation by its differential during one time step.

In order to avoid very small integration steps and to
enhance the approximation accuracy of a nonlinear function, at
each time step the nonlinear equation (3.2) can be solved. It is

carried out iteratively, obtaining successive approximations of

the exact solution AULN, i=1,2,... . The additional computation
time required at each time step for solving a nonlinear equation
is compensated by an obtained possibility to employ significantly

larger time steps. The following approaches are possible.

Simple iteration. The equation (3.2) is solved by obtaining

successive approximations AU :* Lfrom the algebraic equation

A

SRt TL o gty Lk

t+AL t+At t+AL? TeeAt )

I de L (8. 1)

where 1 - the iteration number.

For obtaining a first approximation AU::A it appears reaso-

t

nable to apply the relation (3.6) as W(u° jii

t+AL? t-&AO.) i ZWQ._ W

t-At°

The convergence rate of a simple iteration isn't high, and for
certain nonlinear functions it may diverge. In some cases the

"oscillating" iterative process can be damped, in place of U,

i

as the next approximation employing aUt :ZC"“ -—cx)Ut Ao

where O<as<i.




Newton-Raphson iteration for the equation (3.7) is defined as

ol =) aF et .
Sl S e FCaUL,) » (B.12)
t+At’ |Au
t+At
and can be presented as a relation
LA i S :
A AUHAt = GHAt + W( ULA¢Jh+Ac) stasl=Osiinadn 03, 13

For the first approximation AU?+AL: 0 is employed. Usually

only few iterations are necessary. The less 1is the integration
step, the better is the first approximation for solving a

nonlinear equation. However, the additional computational time is

T
necessary for obtaining the values of derivatives EE 4 QE at eachr
aU aU )
time step.
Application of quasi-Newton methods for solving the

nonlinear equation (3.7) is based upon a substitution of _the
dynamic equilibrium equation by a functional minimization problem
min f=% F'F. It is solved employing the following iteration [12] :
_S'L H-Lx F(AUL ) ”

AUt+1 3 AU‘ t+At

t+AL t+At

(3.14)

The matrix H? is obtained recursively from the relation

H'= (I +wv)) H' (I +vw) , (3.18)
T ; ’2; 6 & &

where V. = 1 zb 8 —iliiﬁ - = s 2

i gi.—i L—i[ d:&'_i g\. % éT?’.L B

A i-1 i
P AUL+AL_AU0.+AL o (e "B e e IR A S F(AU:d-AL) ’
and S, is obtained regarding the condition
g(H e, =0, (3.16)

The advantage of the quasi-Newton methods consists in

reducing the computational effort by employing the recursively

: : : : : ; oF
obtained matrix HL in place of the derivative matrix 307 -
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: 3.2 TIME DOMAIN APPROACH

The dynamic response of the structure is presented as a
superposition of transient dynamic compliances of the linear part

of the structure. Consider the dynamic compliance matrices SR

e of the linear part, defined in Chap.2.1. At each time

point 1At we define vector P _as

X
S AT Pi. = 2_‘ S\,‘jRJ §
J=1

where the lower indices denote the time point number.

(BTT)

" The nonlinear term W( U, ﬁ ) is presented as an external
force depending upon the displacements and velocities, and a
recursive relation for obtaining the displacements at the time
point n+1 is

{3.18)

n

: . k
5 ug (6 f ol j
U ’+1= Sn+1UO =+ Sn+1UO+ Pn+1 s Sn+1—jw.i &Y Sown+1 2
< 3 -1

AN g asys Shre Y
where the notation W,L = W( U;, ﬁ;) is employed.
For obtaining the value de it is necessary to solve the
nonlinear equation (3.18) at the known values [L,ﬁk,wv

B, [y 2y e

,. If the value Uﬁ_‘i is known already, the value U;H

is obtained from the relation (3.3).
Denoting the terms of the equation (3.18) independent of

A through Q_ﬂ, the equation (3.18) is presented as
+ n

v U L)

U.=Q., (3.19)

N+l

+S W {d
O‘ n+

1

For solving the equation (3.19) the approaches presented in

Chap.3.1 can be applied.

Pseudo-force approach results in the relation

Wip= Qe . (3.20)

St e e
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Tangential linearization of a nonlinear function results in

the relation

An (Un+1_ Ur\) > Un - Qrwi 5 Sown ¢ (3 ' 21 )
where R = Tveeg ik EE
3 A al 1
oy Un'un

Simple iteration for the equation (3.19) is presented as

L44 i -]
Unu: Qnu % SoW (Un+1 ¥ Unu ) (3.22)
Newton-Raphson iteration is presented as
i P41 i
An (Un+1— Un ) T Un i Qn+1 T, Sowh % (3 g 23 )

3.3 ANALYSIS OF STRUCTURES WITH LOCAL NONLINEARITIES

The dynamic analysis of a transient motion of large

nonlinear structures amounts of computationai
effort, e.q.;

algebraic equation requires obtaining a derivative matrix at each

requires large

the Newton-Raphson iteration for a nonlinear

time step. If only few d.o.f. of a structure are subjected to a
nonlinear interaction, the computational effort can be reduced by
applying substructuring techniques.

-

Let's consider the equation of motion in the form ;

M11M12 "1 011012 '1 + 1'% K12 2 = O . o 1 (3-24)
M21M22 Uz C21022 Uz K21 Kzz Uz Wz (Uz 'Uz) Rz "
where two substructures denoted by the indices "1" and "2" are

distinguished. The nonlinear interaction forces depend only upon

the displacements and velocities of the substructure "2", and
they are applied only upon the substructure "2" . The equation
(3.2) defining the generalized Newmark's scheme for the equation

(3.24) here acquires the form

AV,

Al AU, G, 5 0 adipes
AzxAzz Wz(Uz'Uz)

AU, G

2

where the values of the vectors U and G correspond to the time

t+at

From the first equation (3.25) the relation between AU1 and

point

AU; is obtained as

AU, = -AA AU, + A5G (3.26)

U 2 o Gt

Substituting (3.26) into the second equation of (3.25), we

obtain

- A MG +VW (U, U)

21 14 1

(3.27)

21 44 2

-1
By oA A B el = G

interacted degrees of
total
employment of the

If the number I].2 of nonlinearly
freedom (the length of Uz) is small in comparison with the
(B <" 8 4 )y “the
(3.26) reduces considerably the
with the 3.2),

and A;: can be obtained in

structure dimension

substructuring relations (3.27),

computational effort in comparison relation

. -4
because the matrices P52~Am£31Atz
advance during an initial operation. The algebraic equation

(3.27) to be solved at each time step is of the
in place of nxn. The displacement increment AU; can be

dimension n,xn,
obtained
‘applying any approach from those presented in Chap.3.1. So, the
Newton-Raphson iteration for the equation (3.27) is defined by

the relation

(3.28)

52

1 AU;*‘ = az + Wz(Ui, ﬁ;) Rl O B

22

2 ~ oW aW A
i -4 2 2 e -1
whexe A22= AZZ—AZLAiiA!.Z 4 A22= Azz_bo _bx 3 Gz_Gz A21A11G1 "
’ ] 6Uz 3U;
Having obtained the value AU:u , the value AU'iH follows

from the relation (3.26).
If the equation (3.24) in time

domain is considered, the

o :
dynamic compliance matrices S, SUO, S”? and the matrices P, Q,

defined in Chap.3.2 by the relations (3.17)-(3.19), are presented

as




Uo JuUo Uo LUo
5 511512 uo 511 1.2 Sbo 11 512 P 1 Q= Q*
= ’ T vo auel’® i B ~uo.|? T * it :
Szxszz Sz 1 S22 Sz 1 Szz Pz Qz

The equation (3.19) transforms to

Uy=1Q D 80 SN0, U TS (8.29)

U;= Ch + Szz’° wz(Uz' U;) > (3.30)
The system (3.29), (3.30) allows to obtain U; from the
nonlinear equation (3.30) of a comparatively small dimension
n xm,, and, after that, to substitute the value LL intoq Fhe
equation (3.29), in order to define the value U;. The value U;
from the equation (3.30) can be obtained by applying any approach
presented in Chap.3.2. The Newton-Raphson iteration for the

equation (3.30) is defined by the relation

i i1 o
Azz (Uz = Uz) = Uz,t B Q2 T Szz,owz 2 (3.31)
b 2 awz
where A =1 - S — + b — 3
2 22,0
aUz g iaUz s l
T Zii2 |

3.4 DIRECT INTEGRATION OF STRUCTURAL EQUATIONS WITH
UNILATERAL CONSTRAINTS

Consider the structural equation of motion

W + 0o +.K U= RELY (3.32)

with the constraints upon the displacements‘
Pl <6 ’ (.38
where M, C, K of dimension nxn and P of dimension pxn , p<n, . are

constant or explicitly time-dependent matrices, and U, R“_K_of
dimension nNx! - vectors of nodal displacements and extgrqal

forces.

If the variable U wouldn't vaxy & in timej;uia corresponding

static problem would appear as the functional minimization problem

s

{ B, Loty s T s TRR 3
with the constraint(3.33). {oi)
’ . B
We introduce the penalty function B = } Bisaxstagch
component of which is defined as L
_ 1 v
B = > k (PtU - dbi) (PLU - doi) ’ (3.35)
. Bt ifrap JiL ¢ >0,
where B.L = - k =
i: 0 , otherwise 3
The minimum condition of the functional (3.34) is
KU=R-F s (3435)

128% oB,

whe F = oB =
x EU }—_4 aU ’

i=1

B ot B Ut Rt i 0.1,
aU

0 , otherwise X

Adding the dynamic terms to the equation (3.36), we obtain
the equation

MTS U Dk i = F L (3.37)

where I is the nodal force vector produced by constraints upon a
structure.

If the value K in the expression (3.35) is sufficiently
large, the solution of (3.37) will not violate the constraint
(3.33) more than to infinitesimal value. However, (3.33) imposes

constraints only wupon the displacements, the velocities and

‘accelerations of the structure depending upon the features of the




penalty function BL ( e.g., in the expression (3.35) the
arbitrary value of K can be employed, and the penalty functicn
itself can be defined in the form other than (3.35) ) . ¥
In order to define completely the motion of the system
approaching the constraint, the auxiliary constraints should be
employed. In general, the motion of the structure is defined by
the initial values of its displacements and velocities and by an
external forcing law. If the numerical scheme is applied, the
status of the system at the next time integration point is
defined by the values at the current time point of displacements,
velocities, accelerations and, perhaps, higher time derivétiges
of displacements, depending upon the order of an integration
scheme. It follows, that the auxiliary constraints upon the
velocities, accelerations, etc. should be used together:.with
those presented by (3.33)upon the displacements. They should ﬁe
imposed upon a structure in the case when the constraints (3:35)
are active, i.e., when they are satisfied as an equality. :
Applying Lagrange multipliers. Let's consider the equatibn
of motion (3.32) with the constraints (3.33), and, if they are

satisfied as an equality PU-d =0, 1let's impose the auxiliary

constraints upon m time derivatives of the displacements U :
PRl= d.j< s R =l (3.38)

If U would be time-independent, the Lagrange multipliers
can be employed in order to obtain the values of displacements
satisfying the minimum condition of the functional (3.34) from

the equation system

v
{KU+P>\O=R ,
U Sl ;

{3.89)
[e] ¥ -
where A, 1is the Lagrange multiplier vector of dimension px1. Each
negative value xoj of some j-th component of the vector - -A_,
obtained by solving the system (3.39) signifies that' : the
corresponding J-th constraint is inactive. Really, only at r%;j>0
the unsatisfied constraint P U-d_ <0 increases the value of the

functional (3.34) by the magnitude xoj(PLU—doi), and requires ‘‘the

expression P‘U—do.L to" be ' zéro. I1f x0j<0, the value of the

functional is increased in the case of satisfied constraint
P U-d . < O, therefore this constraint shouldn't be regarded.
i oL

The value of the Jj-th component of the vector A, must be

‘redefined as follows:

i (3.40)

0 , otherwise £

A=
oJ

{)‘o,-'if At Zalary

To be accurate, the decision of regarding or not the J=th
constraint P U-d =0 of the system (3.39) must be carried out
'iéératively, solving the system (3.40) several times. The J-th
row of the matrix P is deleted, if at the current iteration the
i@alue K°j< 0O is obtained. It is reincluded into the matrix P , if
*atrsome other iteration the constraint upon the displacements
??VU—dotso is violated. The iteration is over, when all the Xoy
‘obtained by solving the system (3.39), satisfy the condition
AfUZO, and at the same time no constraints PLU—doiso are

violated. A physical sense of the term —P:ko isia forge, produced

. upon a structure by constraints.

Supplying dynamic terms to the system {3.39)~and i the

auxiliary constraints (3.38), we obtain the equation system

MU+CU+XKU+Px =R,
PU <4q

o
Ck)

) d’k' k=m

(3.41)

Let's integrate (3.41) numerically. If at the time point
t+At the second relation of (3.41) is satisfied as an equality,
and the third isn't satisfied for some values of Kk , the

corrections upon the values of velocities, accelerations and
3%
higher time derivatives U must be made. The time interval for

these corrections is reasonable to assume very short, as it is
usually supposed by considering a dynamic contact of rigid
‘bodies.

et Assume that the corrections of the velocities are carried
.out. during the time interval Al that is very short in comparison

with the integration step. The velocities at the beginning and
o S

end are represented by U and U = U+ AU . Accordingly to the




Carnot's theorem, the change of the kinetic energy of a structure

because of introducing a new constraint equals to the kinetic

energy of lost velocities é AﬁTM Aﬁ . The loss of energy _is
caused by the work done by contact forces during the time
interval Ats . It appears natural to require, that the motion of
the system would correspond to the minimum value of this work,
or, what is the same, to the minimum change of the kinetic energy
of the structure. At the end of the time interval (t,t+At°) the
constraints upon velocities must be satisfied, i.e., it is
necessary to solve the problem

min } UM a0 o
. il (3425
with the constraint P AU = - P U + d1 : s

The same presentation of the problem in the form (3.42) can

be obtained by employing the momentum conservation theorem as

t+A¢t

M AU = J ORGSR ) g, ) (3.43)

t

The right-hand side of the equality (3.43) presents the
impetus of the internal and external forces, that is assumed ' to
be zero because of very short duration of the time interval At

s

and the finite values of velocities and displacements. In this

way the equation MAU=0 is obtained, that can be presented as

functional minimization problem min %AﬁTMAﬁ with the

constraints. As a result, the same system (3.42) is obtained..

The functional minimum condition appears as

{MA'L'I+PT>\1=O !

. e (35
PAU=-PU+ d1 g

Solving the system (3.45), we obtain
Ssalar AFR) 1h rpulTava . o (3.46)

AP = < MBI W PT Y R U ) s (3.47)

After differentiating in time the first equation of (3.41)
and writing the relations for accelerations similar to
(3.42)-(3.47) for velocities, we obtain the Lagrange multipliers

1]

L
kz and the acceleration increments AU as

A= (M) (PU-4d) , (3.48)

o Al = - M*PT@E MR (PU-q) . (3.49)

% k>
In the same way we obtain all A and AU, kK < m for an

arbitrary order m of a derivative. The physical sense of the

Lagrange multipliers k‘, X X .. is the normal impetus, normal

5 ybe
forces, derivatives of n;;maf forcés, etc., representing the
aétion of constraints upon a structure during the time interval
(t,t+at_).

It follows from the relation (3.47), that the impetus of
constraint forces in global coordinates during the time interval
iy e b Ats) is obtained as
S,=-P'8=-PEN'P)(PU-4) . (3.50)

1

The forces of constraints enabling the acceleration change
(3.49) during the time interval (t, t + Atg) is defined as

F=-PF=-P@N*P)Y(PU-d) . (3.51)

4

Numerical integration scheme is obtained by expressing the

values of displacements and their derivatives at successive
discrete time points employing the relations of the m-th order

generalized Newmark's scheme. The sequence of steps for obtaining

the values UHAL’ UHAL’ U“AL,... at the time point t+at
employing the values U, U, Ut,... at the time point 1t are
defined by the Algorithm 2.2 . Expressing Kofrom the first

equation of the system (3.41) and regarding the relations (3.47),
(3.49), the equation (2.55) and the formulae of the step 3 of the

Algorithm 2.2 are presented as

AW=g-Pa, (2.865)"




where A = b M + b1C + boK e = R“m— (M q,+ C Ok K Q3 1) e
U= g+ b: AT (3.52)

€0y (k> (k>

Usimn QoD Allsep Sle 1 0 Tom BB, oo Ki= ToB 0, (3.53)

where the Lagrange multiplier vectors are obtained from the

relations

R Y —1
A= (P AP '(PATG-4)

k> (3-54)
=P PP TR Yy o Re T

It's worth to mention, that the Lagrange multipliers X
evaluate the impetus of normal interaction forces rather than
their values that go to infinity when the finite mass points are
interacting. The impetus of the normal interaction forces Sh
during the time interval equal the integration step At are

approximately obtained as

Fc 5 )\uAt
S::A‘ SWLES NORERIAT, o "Tm . (3.55)
2

The normal forces FN ensuring the dynamic equilibrium at
the time point t+A1 are obtained as

Ft+At X >\uA'. i KL+A£ : (3.56)
N o 2

The meaning of the relations (3.55), (3.56) is explained in
Fig.3.1 assuming that the velocity and acceleration corrections
are carried out during the time interval significantly shorter
than the integration step.

In general, if the number of constraints exceeds unity,
(i.e., number of rows of the matrix P is more than one), at
each time point an iteration defined by the following algorithm is

necessary.

: )
t+A4At
FN At +At
Z
Xgﬂjt
&
FN
¥
%
it t+A‘t—Ats t+At t

Fig.3.1 Time-laws of the contact force and impetus during
one integration step

Fig.3.2 Vicinity of the contact points i and j




Algorithm 3.1

1. At the current time step obtain the values of the
kK = 0am
(3.54). Obtain the normal impetus and forces SN and FN of the

Lagrange multipliers Ao employing the relations

constraints employing the relations (3.55), (3.56).

2. Delete all the rows corresponding to the negative values

of xoj, 5 FNJ

- from the constraint matrix P.

3. If at the last execution of step 2 of this algorithm
there were some rows deleted from the matrix P, go to the step 1.
Else go to the step 4.

<k

4, Obtain the values U, Kk = U, employing the relations

€255 ;. (3:52), (3.53) .

5. Check if the constraints (3.33) are satisfied, taking
account upon the constraints deleted during the execution of the
step 2. If all of them are satisfied by the vectors U obtained
during the execution of the step 4., go to to the next time step.
Else include into the matrix P all the rows corresponding to the

unsatisfied constraints and go to the step 1.

The relations of the numerical scheme in the case of local

nonlinearities. If only a few d.o.f. of the structure are
involved into the constraint relations, it appears reasonable to

present the system (3.41) in a block form as

11Me2 of § CyaCys = 11842 A 1
Mpo Mo |U2 C,1Coa| U2 K, K2 |V R, i
(k> (841’
B HUs=d PS4 S
%% |2 "

where the length of the total vector U exceeds considerably the
length of the subvector U; . In this case the relations (2.55)'

and (3.53) can be presented as

|

~

A AU2= EZ Y PT)\ ’

22 Zz o
0 e BT
AUL ol RE A11A12AU2 =, A11G1 4
) A e Y=ty = -1
where >\o: (PzAzsz) ( PzAzsz_ do) 2 Azz 5 Aéz_AﬁxAxxsz’
E =5
Gz B Gz_ A21A11G1 ’
(k)_ 5 * k>
U=qk+bkAU+AU, & =alm ey, (3.58)"
(k> L AR (k)_ (k> e k)
where A U;: - Mzsz(PzMzsz) ( PZUZ‘ dk) s U1 = M11M12A Uz 3
= 24
Mzz & M22_M21M11M12.
Employing the formulae (2.55)'"', (3-53)" enables to

Aeconomize the computational effort, because the major part of

computations is carried out upon the matrix blocks of small

‘dimension. The inversion of blocks with the indices "11" is

carried out as an initial operation.

3.5 APPLICATION TO SYSTEMS WITH NORMAL IMPACT
INTERACTION PAIRS

.Obtaining the constraints. Let's consider the structural

dynamic contact problem in the case of small displacements. If
the pairs of possible contact points are known apriori, the
constraints upon the displacements are obtained as follows.
Assume as known the pair of possible contact points 1 and
situated on the normal of the contact surface, Fig.3.2. Denote
the unity normal vector directed from the point J to the point 1
as ﬁo , the initial distance between the points as dﬁ’ the
displacement vectors of the points 1 apd Ji . as fle%xﬂ%y,gl),
B, 0,
of the displacement of the point i. Taking on account, that the

,uﬂ), where l%xﬁay,ul are the Cartesian components
projections of the displacement vectors ﬁ;, ﬁj upon the normal

are pI’;ouL = DU pr;ouj = nouj , the constraint upon the




displacement components is presented as

U = nouj + cle . (8.87)
Using the matrix notation, the inequality (3.57) can be
presented as
[IOOOJ...anxnoynoz;.;—nOX—noy—noz;.. 00@; "1 HS= d.”_ y (3.58:!)“‘
4 i J
where 10— {1010 b i o T b Ul el b 1 ..000)" is the displa-

i Ly iz % gy gz
cement vector of the whole structure.
system is presented as

A [FA 6

o

where each row of the matrix P is similar to (3.58), and the
elements of the vector d° contain the values of the initial
clearances d,‘j : L2
Employing rheological models of a contact surface. IE a
(3.58)

are violated, the holding up contact forces occur hindering the

contact interaction takes place, i.e., if the constraints

penetration of the parts of the structure into each other.
Supposing that these forces are caused by local deformations of
the contact zone, the rheological models of the contact area are
employed. They are usually represented by certain unions of
stiffness and dissipative elements. The contact forces .are
represented by linear or nonlinear functions of displacements and
velocities of the contacting points. The vector of the nodal

contact forces is obtained as

¥ (tdrgey doatphy (3.59)

where F - the vector of normal contact forces, each element
f(iJ) of which represents the normal contact force between the
points 1 and J . If the rheological model consists of the

stiffness element kij and the dissipative one ctj connected by

parallel, the force f(iJj) is obtained as
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The entire constraint

B 1 5 L 4 5 e
£(iJ) = {ﬁ’ i (3.60)

6] , otherwise :

where P(1]J) denotes the row of the matrix P , corresponding to
the contact pair 1J .

Employing rheological models the structural dynamic contact
problem is presented as a matrix equation of motion with the
general nonlinear term (3.1). The summary of the
Qeneralized Newmark's scheme relations for the equation (3.1) is
presented in the Appendix 1, Table A1.5. The computational effort

can be reduced, taking on account local nonlinearities.

‘Applying the Lagrange multipliers enables to present the

local phenomenological contact model in terms of the impact
restitution coefficient. Consider the constraints as

Brilhis Ay

o

(3.61)

‘and assume that during the time interval when (3.61) is satisfied

to equality, the auxiliary constraints

P U =0 K. = %0 5 (2.52)
“are to be taken on account, where m - the order of the
generalized Newmark's scheme. The satisfaction of (3.61), (3.62)

as an equality implies the plastic contact condition, because in
this case coincide the post-impact positions of the contact
points as well as their velocities, accelerations and higher time
derivatives of displacements that are taken on account by the
m-th order integration scheme, implying the perfectly plastic
loca} impact condition. Employing the second order integration

.séheme m = 2 with the parameter values Boz Bt= % (the constant
 écceleration algorithm), the constraints
PRUR=TGEE, (363
IR, =0k oy (3.64)
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present the perfectly elastic local contact condition with the
restitution coefficientI‘ because of the constant acceleration
value held by the integration scheme during an integration step.
The intermediate values of the restitution coefficiemt OSPQS1 are
obtained employing the constraints (3.63), (3.64) and,
simultaneously, the constraint

" 1 i) =
PU=-4RPU, , (3.65)

where At is the integration step.

The summary of the generalized Newmark's scheme relations is -

presented in the Appendix 1, Table A1.6.

3.6 APPLICATION TO SYSTEMS WITH OBLIQUE IMPACT AND
SLIDING FRICTION INTERACTION

Obtaining the constraints. Considering an oblique impéét,

not only normal, but also tangential interaction forces are to be
taken on account. If the tangential interaction is governed by
the Coulomb friction law, there is no sliding until the magnitude
of tangential interaction forces doesn't exceed the critical
value kKT , where FN - normal interaction force, and kK, - Coulqhb
friction coefficient. The difference between the tangential

components of the velocities of the points 1 and J equals

[(U.—u. ) ]JT +[(0.-U. )b 1B, where ., T, b - three mutually
J L o o J v o o o o o

orthogonal unit vectors with ﬁo directed in the normal direction

to the contact surface, Fig.3.2. If there is no sliding, the

velocities and accelerations of contact points satisfy the

constraint
BRORY, =S e R S e BT

et e " oyl Ui=eBissekslie? vwatilS . .66)
BR0 &, -. —bx—by—bz... bx by bz e o LHED

The full constraint system is

Pl o

N [e]

G w2l

1

Il
(@)

(3.67.1)

HJ
e
I

0,P0

1l
o

(B.567.2)

“t

where the relations (3.67.1) impose the constraints upon the
normal, and the relation (3.67.2) - upon the tangential
.cpmponents of the displacements, velocities and accelerations of

tbe contact points. In general, the submatrix PT consists of two

submatrices PT= [ﬁTT] , corresponding to the two perpendicular
Tb

directions on the contact surface, but here we restrict ourselves
with the consideration of two-dimensional problem, i.e., with
'?;b= 6]

If the second order generalized Newmark's scheme is employed
(m=2), the zero right-hand parts of (3.67.1), (3.67.2) denote the
plastic contact condition in both the normal and tangential
direction. In (3.67.2) only the constraints should be regarded,
tangential forces of which don't exceed their critical values
1§FN , otherwise the magnitude of the tangential force is
‘supposed to be equal tokfFN and sliding takes place. Obviously,

" the rows of the matrix PT corresponding to the sliding contact
‘points are to be deleted.

Obtaining a system with single-valued nonlinearity. The tan-

gential interaction force depends upon the tangential component

"'of the mutual velocity as

F, =-KkF, sign (PU) , (3.68)

:where FN, FT — the normal and tangential component of the
tangential force. Employing the relation (3.68) for obtaining
the tangential force, the equation of motion with the
constraints is presented as

MU+CU+KU

Bl Fieae R () 1Y
z (3.69)

1]
o
HJ
()

1l
]

PU=d , RU

[e]

The numerical integration of the system (3.69) is carried
out employing the relations of the Appendix 1, Table A1.6, where
at‘each time step the nonlinear algebraic equation is solved
iteratively. Employing rheological models for representing the

contact interaction forces, the normal forces FN are expressed

through the displacements and velocities of the contact points,




and the system (3.69) is presented as (3.1). However, if the

equality PTﬁ:O is satisfied, the force FT obtained from the
relation (3.68) is non defined. It results in the oscillating
behavior of the tangential force values, if the mutual tangential
velocity of contact points is close to zero. R

To avoid this, the function Sign may be approximated by some
single-valued function, e.g., % arctg [a(")], where by increasing
the value of a the better approximation is obtained. The relation
(3.68) is presented as

F_=-kF, & arctg (o«P,U) . (3.68)"

L f"N T

Employing rheological models. If the magnitude of the

tangential force doesn't exceed its critical value, in place ‘of
substituting the friction law (3.68) by the relation (3.68)"'
rheological models of the tangential contact interaction can be
employed. Similar to the normal contact models, it is supposed

that the values of the tangential force corresponding .:the

multi-value segment of the friction law (3.68) (at PTﬁ=O) are
determined by local contact phenomena. The tangential forces FT
are represented by the 1linear or nonlinear functions of
displacements and velocities of contact points. If a rheological

model consists of the stiffness element ktj and the dissipative

one C_ connected by parallel, the force f(iJj) is obtained as

e

. {KJPT(ij)(U—U°)+ctjPT(lJ)U, if |IT(1J)|>kffN(lJ) 5 (3.70)
krfN (ij)sign [k_t J_PT(l,j ) (U-U, )+C-L,-PT (ig )U] ,otherwise ,

where fN(ij) — the normal interaction force of the contact pair

Arohdty UO - displacement vector of the structure at the time -point

of the beginning of the contact without sliding between the

points 1j.

To be accurate, after disconnecting of the contact points
the displacements of the rheological model don't become zero
instantaneously. In order to account for this circumstance it is
necessary to consider the equations of motion of the rheological

model simultaneously with those of the structure. However,
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rheological models are introduced basically for representing the
tangential interaction forces at the beginning of the
interaction, and it looses its physical sense when the contacting
points disconnect. Therefore the expression (3.70) is usually
! employed during the contact without sliding, and the

displacements are assumed to be zero when sliding occurs or when

+ the contact points disconnect. The rheological model equations

~ are to be solved, if they consist of the sequentially connected

elements, and in this case the total number of degrees of freedom
of the structure increases.
As a shortcoming of rheological models the lack of simple

and reliable methods for obtaining their parameters can be

..mentioned. Usually the parameters are obtained experimentally in

1%prder to obtain a possibly good approximation of the real

. system's motion.

Applying Lagrange multipliers. The equations of motion

(3.41), (3.45) for the structure with wunilateral constraints
(3.67.1), (3.67.2) are presented as

{ MU+CU+RU+P a = R(L),
(SEE1)
PNUSdo 5
it > = =
MAU+PN)‘;<+PT“)<:O -
k> (k)_
PNA U= - PNAIJ 5 (3.72)
k> (k)_
PTA U=—PTAU A e e

A physical sense of the Lagrange multipliers is as follows:
A, — normal forces, ensuring the coincidence of the contacting
points of the structure at the time point t+At

«»X; = normal forces ensuring the correction of the acceleration

value,

A - impetus of the normal forces, ensuring the correction of the

velocity value,

“u_ — tangential forces ensuring the correction of the

acceleration value,

w:p - — impetus of normal forces, ensuring the correction of the

velocity value,
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If all the constraints in (3.71), (3.72) are satisfied as
equalities, no sliding between the contact points occurs. If
sliding takes place at the contact pair ij , we assume the
magnitude of the corresponding tangential force to acquire its
critical value:

1 e N i eI

kj
In this case the system (3.72) is presented as

[3'3) A~

T ATA
MAU+PN";<+PT“1<=O 5
k) (kz_
P U=- PNAU ’ (3.74)
5 [8'3) Rehley
PTAU=—PTAU 5.l = flae2iehe |
where PN denotes the matrix PN with the row PN(ij),

corresponding to t?e contact pair 1Jj, replaced by the row

PN(ij)+kaT(ij) : PT denotes the matrix P with the row BT
A T T

deleted ; Hy denotes the vector H, with the elements yk(ij)

P

T

deleted. Denoting FN] = P FN} = B ,[ﬁk] = )t , the system
PT x
(3.74) is presented as

(03]

MAU+P x =0 ,

— (k> —k> (3.75)
PAY =B T & . B =2t v
Presenting the relations (2.55)', (3.52)-(3.54) for the

system (3.71), we obtain numerical integration relations as
AaU=G-Pa , (2.55)°

where A = b M + b C + b RLEGS R = (Mg +C g+ K g .

= q:+ b: AU . (3‘52)|0
ey s " Gilely St Sy 5= e,
LI T 0 A P | | S - S S - P .1 04
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e
Ng= AR A BN B AT ) s

= (k> (354" ¢
T o0 e i M o kR o e o

As a rule, the sliding contact points aren't known apriori,
therefore at each time point an iteration governed by the
following algorithm is necessary.

Algorithm 3.2

1. Assume § = ; = [ iu]

&
2. From the relations (3.54)'' obtain the Lagrange

multipliers A _, A, #, k =1,2 at the time point t+At.

3. Obtain the vectors of normal and tangential impetus of
constraint forces employing the relations

t t+AL
F- o+ ~
A A
L1 N ¢ At + )\uAt : Su v H“ t ,
N 2 1 x 1

+and the vectors of the normal and tangential forces at the time

point t+A1 employing the relations

Ft*At 4 Kt+A¢ i Kt+AL A FtéAL L P1+At
N o 2

N 2

4. Delete all the rows of the constraint matrices P (1J),
PT(ij) corresponding to the negative values of Xo(ij) G m
SN(ij) % Biyer FN(ij) < 0 at the time point t+At .

5. If there are some rows deleted at the step 4, go to step
1, else go to step 6.

i 6. Mark all the rows corresponding to the pairs*'of '‘the
contact points 1], where the values of tangential impetus of the
constraints exceeds their critical values, 1i.e., where the
-4dnequality K|S (ij)|<|S_(1J)| is satisfied.

7. If there are no rows marked during the execution of step

6, go to the next time point , else go to step 8.

8. Transform the constraint matrices P, P, taking on account

,the constraints, marked at the step 6. Go to the step 2.
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The summary of the numerical integration relations is
presented in the Appendix 1, Table A1.7. The computational effort
can be reduced taking account for the local nonlinearities.

Employing complex friction laws. When the sliding friction

law besides the Coulomb friction term includes also other -terms,
e.g., linear and cubic [113], it appears reasonable to: take
account for the Coulomb term employing the constraints
(3.67.1),(3.67.2) and to present the other terms by a nonlinear
continuous function of velocities. In this case the problem: is

presented as a nonlinear equation of motion

MU+CU+KU =D +R(L) (3.76)
with the constraints (3.67.1),(3.67.2), where V(ﬁ) presents ‘the
contribution of continuous terms of the sliding friction law. ”

The system mentioned above is integrated in time employing
the Algorithm 3.2, supplemented by the formulae of the Table A1.5
of the Appendix 1.

.

4. STATIONARY DYNAMIC ANALYSIS OF NONLINEAR ELASTIC
STRUCTURES

This chapter presents analysis techniques of the resonant
elastic mechanical structures with nonlinear interactions
vibrating with stationary or slow-varying amplitudes.

For the stationary motion law analysis two alternative
techniques are employed: the solution of the boundary value
problem in time and the weighted residual approach. In the first
case the motion law is obtained by the numerical integration of
the equations of motion, and the displacements and velocities at
‘the beginning of the period are established in order to coincide

with those at the end of the period. This approach can be

.. -employed for the free vibration analysis, too, considering the

vibration period as an auxiliary unknown. In the second case the

. motion law is represented as a superposition of some set of

orthogonal periodic functions, obtaining the weighting factors by
minimizing the residual. The harmonic balance techniques are
shown to be a special case of the weighted residual approach.

For obtaining the motion law analysis in terms of vslow
varying amplitudes the averaging techniques are employed. When
integrating the averaged equations of motion numerically, at each
time station harmonic components are obtained by means of the
Fourier transform.

The above mentioned techniques enable to obtain both stable
and unstable motion laws of the structure. The stability of the
motion laws can be approximately evaluated employing transfer
matrices, Hill's determinants, or approximate stability
evaluations based upon the averaged equation analysis and upon
the energy criterion can be carried out.

The original results of this chapter are the algorithms for
obtaining the stationary and slow varying vibration amplitudes
of the unilaterally constrained structures and the linearized

equations for the motion law stability analysis of the structures

with the impact and friction interaction points.




4.1 DIRECT METHODS FOR OBTAINING FORCED AND FREE VIBRATION
LAWS. BOUNDARY VALUE PROBLEM IN TIME DOMAIN

Consider the matrix equation of motion of an elastic

structure with nonlinear interaction as

MU+CU+RKU=WU,U) + R(t) . 431y

The stationary structural response to the periodic
excitation R(t)=R(t+T) can be presented as a vibration with the

period T or ST , where the values 5=2,3,... correspond to the
i

subharmonic, and the values S= % o) B SRR T to the hyperharmonic

vibration. In certain cases there can be no periodic response
irrespective to the periodic excitation. 1In this chaptgr we
consider only the stationary motion laws with S=1, i.e., when the
periods of excitation and structural response coincide. In this
case the displacements and velocities of the structure satisfy

the equation system

Detwall, wel . nolldve T (4.2)

where U =U(T), U =U(T), U, =U(0), U, =U(0).
It appears natural to regard the values of Uo, ﬁo .as

unknowns, and the values U}, U} as functions obtained from ‘the

equation (4.1), integrating it from the initial values Uo, Uo.

The simple iteration for solving the equation (4.2) is

applied as

L+1 it frl+ 4 23

u.t-u. , US-U (4.3)
where the upper index “i" denotes an iteration number, and the

values U;,U; are obtained by means of the numerical integration

of the equation (4.1) during the period [0, T] from the initial

values U; 7 U; . An iteration presented by the relations (4.3),
is adequate to the numerical integration of the equation (4.1)

during the m excitation periods, where m coincides with
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where i = =N R s =

the number of iterations. If the structural dissipation forces
are significant, the stationary motion law is obtained after
several iterations, i.e., the iteration scheme (4.3) converges.
In the case of insignificant structural dissipation the convergence
rate is very 1low, and prohibitive numerical errors can be

accumulated during the 1large number of integration periods.

s However, the motion laws obtained by the simple iteration are

always stable.

The Newton-Raphson iteration enables to obtain considerably

Thigher convergence rates. The Newton-Raphson iteration scheme for

" ‘of the equation (4.2) appears as

aUT aUT i+1 i i i
— -1 —= Ut t-u g - a0
an an
A . = s (4.4)
aUT aUT R (et § il Sl
- | U "t-u U, - UL
an an

where the derivative matrix on the left-hand side of (4.4) is of
the dimension 2nx2n, and Inxn denotes the unity matrix. In order

to determine the derivative matrix it is necessary to obtain a

relation between the variations of the functions 6U;, <SUT

‘and the variations of the unknowns éUO, éUo : Considering a small

perturbation éU of the motion 1law U(t), the equation (4.1)

appears as
M (U+sU) + C (U+sU) + K (U+6U) = W(U+U,U+6U) + R(t) .  (4.5)

Expanding the nonlinear terms as the Taylor series, we
restrict ourselves with the first order infinitesimal terms.
Taking on account that the equation (4.1) remains valid for an
unperturbed motion, too, we obtain

Mol + €60 +% &0 = 0 . (4.6)

) ~ T
L EE . Multiplying (4.6) on the left
al ol

‘'side by the conjugate variable vectors N and™ " &2(%t)
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correspondingly and integrating it in time from O wuntil T, we

obtain

b
J x (MsU + CoU + R6U) dt =0 ,

o
s o

J L (M&U + CoU + RsU) dt = O

o

(4.7)

Integrating each equation of (4.7) by parts, after spme

manipulation we obtain

(AT+IT IMEU, + (NLC-ATHuTR)SU, — (AT 4+ M6, - (AT C-Ar M  K)6U, +

T T
+ J(ATM ~ATC + A"K)sU dt - J(LTM ~WC «WTRys0 at =D voilgalsy
o

o

The equation (4.8) enables to establish the relation between
the variations of the time-laws of displacements SU(L);

velocities 8U(t) and their values at the beginning and the end of

the period éU;, éUo, éU}, éUT. In order to express éU; through

the values éUo, 6Uo, we require A(t) and wu(t) to satisfy the
equations of motion

T e TR S Tt e s e =D (4.9)
with the end values at the time point 1t obtained from- ‘the
equation system

i o s i
MG LR Uy = G G A - M+ Ep =1 s (4.10)

Each of the equations (4.9), (4.10) have n right-hand - side
vectors, therefore their solutions A (1), u(l) are matrices, each
column of which is obtained by solving the linear matrix equation
with the corresponding column of the right-hand side matrices as
the right-hand side vector. The transpose signs at the matrix M
are omitted because of its symmetry. The matrices ﬁ, E Aere

should be regarded as time functions obtained by substituting
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into their expressions the time laws Ut(t), Ui(t) obtained during
the previous iteration. The system (4.10) has more unknowns as

the equations, and the end values can be taken as, e.g.,

A=0 , pu=0, =0 , x=-N" . (4.11)

o T »

Taking on account (4.8)-(4.10), we obtain the relations

aU_ s Y au_ At
—=x, C-x M+puK , —=(r +p )M . (4.12)
ol ol
aU,r BU;
In a similar way the derivatives — , —— can be obtained.
al al
o o

Integrating the equations (4.9) with the end values

Mo O el M=l 1M Potmaati™ Woas (4.13)

4

we obtain the relations

a[‘J-r e =T Tz aU-r i bR ¢
—TaalC-a MK, ST (AL Hul )N L (414)
an U,

The two matrix equations of the system (4.9) are identical,
‘and the end values (4.11) for A and (4.13) for u are of the equal
magnitude and have opposite signs. Therefore there is no
necessity to integrate each equation of (4.9). Moreover, the end
values of (4.11) for » and (4.13) for A are zero, and the

-.corresponding values Moo ML= 0 and o DS [ 1 The

system (4.9) can be transformed into the system with the

..positive damping term by means of the substitution i T

Summarizing the above consideration, it follows, that in

order to obtain the derivative matrix of (4.4) the following

; steps are necessary.
5

1) Numerical integration during the period t*e(O,T) of the

. matrix equation of motion

e

M x + [C(T-t*)1"x + [K(T-t*)1"x = 0 (4.15)

with the initial values A_=0, A_=-M"*, where C(I-t*) and KTt )

éré-obtained by substituting into their expressions the time laws

: éuL(T—tx), Ut(T—t*). As a result the values X _ , A are obtained.
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2) Obtaining the derivative matrix blocks from the relations . o

o 3
; . : the Newton-Raphson iteration the derivatives _HI U, 3%
e A W Y oy, A7 oU, Y ou, F nece Takin i %
e _ATC = ATM AT _xTM y — = erb S = -xTM WA 1) ssary . g on account the relations
oy, ol au, ol
SU(T+sT) = U +U sT SU(T+8T) = sU +U 6T (4.17)

The convergence rate of the Newton-Raphson iteration scheme

is very high, if the initial approximation is good (e.g., for the

" ‘the variational equation simi i i
linear system one iteration is necessary). In order to obtain the g ™ MRS i

amplitude-frequency relation of a vibrating structure;  the P . 15
Tha »T Yo s . ~o ~
excitation frequency is varied in small steps, and the solution n(Xm+“T)MéUT+(XTC”XTM+HTK)5U; - (x:+y;)M5UO_ (ATCATM+TRYSU +
o o o o

obtained at the current frequency value is employed as the

initial approximation at the next frequency value. -
As the drawback of the Newton-Raphson iteration . the \+((k:+y:)MUT+(x:C_i:M+“:§)ﬁT)éT v J({TM LRTE 4 kTﬁ)éU dat —

comparatively large computational costs for obtaining the Rl A = 2

derivative matrix at each iteration should be mentioned. However,

in the case of local nonlinearities the computational scheme can

- J(HTM - 4TC+ uK)sU dt = 0 . (4.18)
[e]

be considerably economized. If the vector of nonlinear forces is

. 0
presented as W(U,U) = [ . ] , at each numerical integration !
Sub i
Wzﬂk-[L) stituting the end values (4.11) and (4.13),we obtain the
25 relations
time point the relations of Chap.3.3 can be employed, where the "
matrix blocs Az;' o A are independent of U;,U; and therefore v au_ ﬁ ou, .
are constant during all the integration time. The same values of aT e oT ~ UT - (4.19)
the matrix blocs are valid for the equation (4.15), too, and the
computation of A11A12 and A21A11A12 can be carried out as an e,
- THE WEIGHTED RESIDUAL APPROACH FOR OBTAINING FORCED

initial operation.
VIBRATION LAWS

The computational resource reduction can be obtained, - LR
carrying out computations in time domain. So, after the _ £ L ;
ok o Structural equations with the nonlinear terms. Consider the
substitution t*=T-t the vectors —> and —2 can be regarded matrix equation of motion of an elastic structure with nonlinear
aU; 6U; . A interaction as (4.1) with the periodic excitation R(t)=R(t+T)
as initial forces. The displacements U as well as the conjugate - The motion law U(t) of the structure during the vibration iod
{ perio
variables A are obtained employing the same blocks of the dynamic is represented as a superposition of a set of some T fodi
s g -periodic

= time functions as

compliance matrices S ,S determined during an initial i

operation. U(t) = N(t) idist, (4.20)
. . . ¥ I ti ti ; h o 3
The case of unknown vibration period _ nyesLads 1ng'_?,t i whereN(t) - the matrix containing the time function a
auto-oscillations and the free structural vibration, the period T s, an UA—

- the constant vector of the generalized amplitudes of the points

is to be regarded as an unknown. In this case for carrying out .:of the struct S baba b b st n 1a s i

and weighting




the residual during the period leads us to the nonlinear equation

in terms of generalized amplitudes UA 3

T T
Ay, = [ N'Waw, ju,) at + [ ¥R at (4.21)
o o

2
A =J (N'M N+ NCN+NEKN) dt .
o

The simple iteration scheme for the equation (4.21) is

presented as

A

T T
T e JN*W(NU';.P'IUD dt + J NR(t) dt | . (4.22)
o o

The Newton-Raphson iteration is obtained by presenting the

equation (4.21) in increments as

T
AU +6U, ) = JNT[(W(NUA,ﬁUA)+ % NoU_ + "—g ﬁéUAdt+R(t)]dt . (4.23)
. % a a

From (4.21) follows the relation

U'' = U +A(R-AU +R) (4.24)
” T T T b
where A_=A- NT% Ndt- NT% Nat, R =[N"wav0}, R0} at, R=[N"R(tyat,
i al|i
o o o o

and the notation means '"'obtained by substituting the values

i

NU\'.

AL

.
&
NUE .

If the structural nonlinearities are localized in local

5 0
zones, di.e.dif W . U) = [ 4 ] , the equation (4.21) is
Wz(Uz’Uz)
presented as
-
l:iuﬁ:iz:l [UA,]=[ 0 ]+[f;NtR(t)dt] 3 (4_ ,2,1 2
2122 | (U f:N:Wz(NZUAz.NzUAZ)dt STNTR(t)At) .

"“'where X (t) = { 0

After some manipulation the equation (4.24) has the

" dimension equal to the length of the nonlinear force vector v,

and is presented as

~

LA el e S U R (4.24)

A2 T22 A2 21 14 A1l 22 Az N2

NTaWz

o Ndt ,
ZaUZ 2

i

P

T
aW.
Nat - JNT 2We
2 3z

T

b £rg ~ _A
where Azz: Azz_ Az 1A1 1A12 2 A-rzz_Azz_J
o

i

2 A2

T ) T
R~[\w, a0, LUt R, =[MR(tat, R, ,=[NR(t)at.
5 o o

Unilaterally constrained structures. We consider the 1linear

structural equation of motion with the constraints

O +C 0% L0~ "Rety),
PUsid .

(4.25)

1A

Substituting the relation (4.20) into (4.25) and weighting

the residual, we obtain

AU,
PNU

1]
0

> (4.26)
d

1A

The constraints of the system (4.26) must be satisfied at
each time point during the vibration period. Introducing the
Lagrange multiplier vector A(f) 2 O , we obtain the following

equation system

b o
AUA+JNTPTx dt g%y *
° (4.27)
PNU

A

1l
o

A(t), at each time point t, where A(t)20,

, otherwise .

The physical sense of the conjugate variables A(t) is the

normal force of constraints upon a structure. Similar to the




relation (4.20), the time-law A (1) is approximated by a sum of

T-periodic functions in the time interval [0,T]:
A=NA . (4.28)

We replace the constraint P N U, = d at each time point of
the interval [0,T] by the projections of this constraint upon a
subspace of the same functions, by the superposition of which the

time law X has been approximated:

A,

T Ly
PNat U, = [ Faa , (4.29)
o

(o ey

Taking account of (4.29), the system (4.27) is presented as

AU R
A

T (4.30)
D .

4 T
whereB=Jﬁ*Pth ,Dz[ATddt :
o

o

Expressing A from the system (4.30), we obtain

A = (BA™*B") *(BA™*R,-D)

The time\%gg A(t) during the period is approximated by the
relation (4.28), and at some time points it may occur that x<0 ,
causing the negative normal interaction forces. In order to
exclude these negative values, the constraints shouldn't be
considered at the negative values of X . Therefore we regard the
rows of the constraint matrix as the time functions P = P(t), and
prescribe them the zero values at the time points when the
corresponding elements of the vector A
from the relation (4.28).

In general, the contact forces are obtained employing  -the

are obtained negative

following algorithm.

100

Algorithm 4.1

1. P°(t) =P =const , 1 =0.

2. B

I
S
Zg
=
o
-

4. A =N A,

5. For each row Pj of the matrix P, Jj=1,2,... , obtain
) P%(t) for all time points t, where 1 (1)20 ,
P =] :
2 0O , otherwise .

6. If P'* coincides with P° , end of the algorithm;
Otherwise 1=1+1 and go to step 2.

With the known values of A(f) , the generalized amplitude

vector is determined by the relation

-1 ¥
UA— A (RA— BEA ) e (4:31)
Structures with normal and tangential constraints. We
consider a linear structural equation of motion with the
constraints
w .

MU+ CU+EU= R(t) ,
PNU = d . (4.32)

PTU =0 .
..where the pairs of the corresponding rows of the matrices PN. PT
impose the normal and tangential constraints wupon  the

_ displacements of the structure points. The tangential constraint

is to be regarded only when the corresponding normal constraint

is active,i.e., if it is satisfied as an equality. Moreover, the

~-magnitude of a tangential force éj can't exceed its critical

value H, S k »; + determined by the magnitude of the

f
Coulomb

corresponding normal force . and the friction
J
coefficient kf . The equation system similar to (4.27) appears as
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T T
TET STaT
AU + [NBrat+ [WBuat =R,
(o] o
PNU =d , (4.33)
PRNU =0 |,

where the normal force is determined as

x(t), at each time point t, where A (1)20,
Bl { 0 , otherwise ,

and the tangential force is determined as

. £(t), at each time point t, where [1(t)[<kr(t),
#ity = { kfx(t)sign u(t), otherwise .

A A

The matrices PN, PT are obtained from the matrices PN, PT as

follows. The matrix P is the matrix P , each J-th row PNj of
which is replaced by the row (PNj+kaTjSign pj) at the time
points, when sliding in the J-th contact pair occurs. The matrix

A

P is the matrix P, each j-th row of which is replaced by zero
at the time points, when sliding in the j-th contact pair occurs.
The time laws A(t), n(1) are approximated by

Rk eoRed W ign o2 (4.34)

Assuming the notations

= S8 P07 d e wipeeei Y} i fndies be
P= O e Nz tdataal=] X g A= y D= y
Sl QR N N M
the system (4.33) is presented as 1)
'l‘_:x
AU + [NPNAat =R,
A
S (4..36)

|
=
=
1]
=]

In general, the values of the contact forces are obtained by

the following algorithm.
Algorithm 4.2

o . -
1. PO(t) = P = const , P{(t) = P = const , 1 =0.

T T g
- s =
2.5 JNT‘ at ‘=J*P‘th ‘
o o

3. A = (BAT'BT)T'(BAT'R-DY
PPRLIE N T Y

5. For each row PNj of the matrix PN, J=1 ,25hmaa JSnobtain,

: P' (t) at all time points t, where A (t) = 0 ,
P\. +.1 - Nj J
N 0 , otherwise .

6TVIE P;+1 coincides with P; , go to step 7.

Otherwise assume 1=i+1 and go to step 2.

7. Transform all the rows of the matrices P; ° P; as
follows:
Si+1 - i i i+ t .
PNj () = kaTJ.(t)+ PNj(t) 5 PTJ_ () EeDiniizepati t Lime

points t , where ij(t)ls kf xj(t) . At the other time

points don't change the rows P;j, P;j.

8. If there exists at least one pair of rows P;j 7 P;

transformed at step 7 , increment i=i+1 and go to step 2.

Otherwise - end of the algorithm.
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Analysis in frequency domain employing the harmonic balance

techniques is may be considered as a special case of the weighted

residual approach. The harmonic functions are employed as

weighting functions N(t1), ﬁ(t)
NCEY="11"T Tecoswt Tsinet TecosPot wlsin2etv... 1

N(t)= [ T Tcoset Isinet Icosgwt IsinZet ... 1 ,

where I — unity matrix of the dimension equal to the length - of
the vector U , f — unity matrix of the dimension equal to the
number of constraints, i.e., to the number of rows of the matrix
P, and ngg . The generalized amplitude vector consists of the

sine and cosine Fourier amplitudes U =|U°,U*,U*,U%,U%,... T,  the
A < s -] s

harmonic balance method relations being presented in the Appendix

S

Finite element approach in time domain is obtained by

dividing the interval [0,T] into m finite elements each of the

length % . When employing the second order elements with three

nodes, the generalized amplitude vector on the i-th element is
presented as

U,
2i1-1
Ta¥o - ' W e
o 1 2 21
Y i
Uzi.d-i i
£(c-1) £ (z+1) Ptigis
wherg M= - N U 1y@en) N —— ,  £= i,
2 2 T

During each iteration the matrices for the whole time
interval [0,T] are obtained according to the global " finite
element matrix assembling rules, imposing the periodic motion

condition as U‘=Uzm . The global generalized amplitude vector'is

+4

i [IJ,U ) AL ]T
4 2 3

A 2m

4.3 TRANSIENT AND STATIONARY ANALYSIS OF NONLINEAR VIBRATION
WITH SLOW VARYING AMPLITUDES

Employing the time-averaging techniques. Consider the matrix

equation of motion of an elastic structure with the nonlinear
interaction as (4.1) with the periodic excitation R(1)=R(1+T). we

present the displacements and forces as truncated Fourier series

as
i
Uty = } U¥cos(k-1)et + Ussin(k-1)wt ,
S
e
R(t) = R cos(k-1)et + R:sin(k-1)ot , (4.36)
T Y
= :
W(t) = ) Wicos(k-1)wt + W.sin(k-1)et ,
7
where according to the definition U:= R:: W:= 0 , and w =§E :

Employing the averaging in time techniques [98] , we consider the
amplitudes Uk, U:, k=T,p as time functions. Moreover, we require
that the exp:essions of the velocities should be presented in the
same form as in the case of the stationary amplitudes:

P
ﬁ(t) = }ﬁ —U:(k—1)w sin(k-1)wt + Ut(k—1)w cos(k-1)wt , (4..37)

k=1

In reality U: : Ut are time functions, therefore it is

necessary to take account upon this circumstance when
differentiating in time. The form of the relation (4.37) assumes

satisfying the relations
U cos(k-1)wt + Ursin(k-1)ot =0 , k= 1,p . (4.38)

" .. .Differentiating (4.37) in time, we obtain

P
Ly = }q [ 0% (k-17)acos (k-1)wt - U (k-1)%"sin(k-1)wt -

k=41

0¥ (k1o s1n(k-1)wt + U (k1) cos(k-1)wt ] . (4.39)
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Substituting (4.36)-(4.39) into (4.1), and averaging during
the time interval [0, T], after some manipulation we obtain the
equation of motion in terms of slow varying amplitudes as

- O T U‘:w
2uM 0 U:
0 2wM U;
2{p-1)eM 0 v »:
i 0 2(p-1)eM || T°)
=K 1 U:~ - WZ" - R:~
-0  K-w'M U: —W: Rt
“E+®M —wC o BT T B . 2
= ; waigen W=t v | 124840
~(p-1)eC  K~®(p-1)7M|| w| |-w°| |-R
| B e (R IR e

Matrices in the equation (4.40) are block-diagonal. With no
nonlinearities present (W=0) , the equation (4.40) decomposes
into K independent equations, each of which enables to obtain the
corresponding Fourier amplitudes. If the nonlinearities are
present, it is necessary to solve the equation (4.40) of the
dimension 2(p-1)n x 2(p-1) . : i

If the nonlinear interaction forces are concentrated inl'the
localized points or zones of the structure, the vectors and
matrices can be represented in the block form, where blbéks
correspond to the linear and nonlinear parts of the structure.
The matrix inverse and other block operations corresponding to
the linear part of the structure are carried out during an
initial operation. As a result, during each iteration 'the
nonlinear matrix equation of dimension Z(p-1)n x 2(p-1)n, is “to
be considered, where = the number of the nonlinear degrees of
freedom.

If the simple iteration scheme for solving the nonlineéar
equation at each numerical integration step doesn't converge, the

Newton-Raphson iteration is necessary. 1In this case at "each
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aW
jteration the derivative matrix —= is to be determined

aUA
employing the relations of the Appendix 3.2.
In the case of ill-conditioned stiffness matrix ,i.e., b o
rigid body motions of the structure are possible, the system
(4.40) can't be solved, because at the very first iteration it is

necessary to invert the matrix K . As a rescue from this

situation the equivalent transformation of the matrix K and of
the nonlinear term W can be accomplished by presenting the left
upper block of the equation (4.40) as

0=-KW+¥+K , (4.40)’

W= WO+ max |k,| U] , with the

e,

where K = K + max |ku| 1L
L. L

nonsingular matrix K .
The dynamics of rigid-body displacements of a structure can
be taken into account by presenting the equation (4.40)' as
M +c =-EW+W+R , (4.40)"
" that coincides with the initial equation (4.1). However, in this
case the implicit unconditionally stable numerical integration
scheme must be adopted, because otherwise the presence of the
equation (4.40)" prohibits the time integration steps exceeding
‘;Ehe shortest natural vibration period of the linear part of the
‘Jéﬁructure (see Chap.2).
J For obtaining stationary vibration laws the left-hand side

of the equation (4.40) is assumed to be zero. The derivative
matrix necessary for applying the Newton-Raphson iteration to the
~ obtained nonlinear algebraic equation is presented by means of
IFEhe same relations of the Appendix 3.2, as in the case of

s
averaged equations of motion.
%

The case of unilaterally constrained structures. The dynamic

-, ;xreduction of an elastic structure with unilateral constraints is
. carried out by truncating the dynamic contributions of the higher

modes of the linear part of the structure (see Chap.1). 1In
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general, when the normal and tangential constraints are present,
the Lagrange multiplier values Xy KT are obtained from the
relation (1.50), Chap.1. In this case the equivalent nonlinear

force

W(z )= <ATP (P S.P') ' Baz,+ BSR - d) . (4.41)

k
is to be regarded.

If the time law zi(t) is known, the value W(ZL) is to be
determined according to the Algorithm 1.1 of Chap.1. As a result,

the matrices P, P acquire the predetermined values at each time
point, i.e., they can be regarded as time functions and employed

in order to determine the derivative
PTy *P a (4.42)

at each time point. Further the relation (4.42) is employed in
oW aW

place of — , that in its turn is employed when obtaining ——

aU aU

= A

(see Appendix 3.2).

4.4 STABILITY ANALYSIS OF THE VIBRATION LAWS

Linearization of equations of motion at the solution point.

The stationary motion laws obtained by integrating the equations
of motion numerically until the end of transient vibrations, are
always stable. However, among the motion laws obtained by solving
a boundary value problem in time domain (Chap.4.1) and by
employing the weighted residual approach (Chap.4.2) may appear
unstable ones. ’

The stability of stationary motion laws of nonlinear
mechanical systems is wusually investigated considering the
equations of motion linearized at the solution point. Assume,
that the equation of motion is presented as (4.1) and a
stationary solution U*(t) = U*(t+T) is obtained, the period $ of
which coincides with the period of the exciting force R(t)=R(ffT).
In this case the linearized equation for investigating ' the
stability of the solution U*(t) is obtained as
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MX+C(t) X+ K(t)X=0 , (4.43)
where i(t) =R ey " and E(t) = - éﬂ 4 are the
C U TR AU 2’ oy

time functions.
' Consider the equation of motion with unilateral constraints

; Mi+CcU+RU=RM) , (4.448)
P U= 4y 3 (4.44Db)
{ and if the constraints (4.44b) are satisfied (4.44)

as equality (i.e., if they are active)
there are considered the auxiliary constraints
Gk

PoU =0 5 K=l (4.44¢)

.

Considering U*(t) as a T-periodic solution of this equation,
the linearized equation for investigating the stability of the

motion law U*(t) appears as

b B S R s (4.452)
and at the time points when the equality
PRIt A 0
4 is satisfied, consider the constraints (4.45)
PX=0 ; (4.45D)
{ PX=0 , k=T0 . (4.45¢)

The numerical integration of the system (4.45) is carried
out by employing the approaches presented in Chap. 3.4 - 3.6 with
the only difference that the activity or nonactivity of the
constraints is predetermined at each time point by substitution
of the solution U*(t) into (4.44b). Therefore the system (4.45)
vcan be regarded as the system with periodic coefficients.

Applying the dynamic reduction techniques of the
unilaterally constrained structures by truncating the higher mode
dynamic contributions of the linear part, we obtain the relation

(see Chap.1)
Neae NETE . PN e ST AR (1.43)
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Presenting the contact forces in the form of the nonlinear

function W(Zi,zi):—AIPTx , at all the time points where x>0 the

following relations can be obtained

oW TpT A—-1 aw TuTay=d =3
—=-APA'PA , —=-APA'BAPA , (4.46)
azi azi

At the remaining time points (i.e., where A < 0O ) , the
aW aW
relations — =

-~ = 0 are assumed. The time functions (4:46)
azi azi

are employed in order to obtain the time-dependent stiffness and
damping matrices of the system (4.43).

The transfer matrices Q are obtained by integrating

2nx2n

numerically the linearized system (4.43) or (4.45) with
T-periodic coefficients during the time interval [0, T] with the

following initial values at the time point t=0 :

for Sis=c 1™, XJ.(O)=1, x (0)=0, i=T;m , i=],
00, d=Ti0
$or 3 b BeaBilOlsls H DD, SR U & 4

x.‘(O):O, =T
The J-th column of the transfer matrix presents the solution

X
{k] of the system (4.43) or (4.45) at the time point t=T .

The characteristic equation of the system (4.43) or (4.45)

of dimension 2nxX2n is
det [ QL ] 2'p 8% (4.47)

After obtaining the roots of the characteristic equation
(4.47), the stability or instability of the motion 1law of the
initial nonlinear system is determined employing the well-known
Liapunov's theorems

1. If the absolute  values  of ‘'all the roots p of the

characteristic equation (4.47) are less than unity, the motion
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law is stable irrespectively of the higher order infinitesimal

terms.

2. If among the roots of the characteristic equation (4.47)
there is one exceeding unity by its absolute value, the motion
law is unstable irrespectively of the higher order infinitesimal
terms.

If among the roots of the characteristic equation (4.47)
there are some equal to wunity, the necessary condition for
stability is that they should be simple or have simple elementary
dividers.

The Hill's generalized determinant techniques present the

solution of the linearized equation as

P

iR
@

X(t) R Xfcos(k-1)ot + Xsin(k-1)et . (4.48)

el

k=1

The time functions K*(t), Cx(t) are obtained by substituting
(4.48) into (4.43). Equating the coefficients at the sine and
cosine functions correspondingly, the equation for determining

the characteristic indices is obtained as [82]

mt[Y@)—hI]=o ; (4.49)
2n

where w = — .
ik

The presence of at least one positive characteristic index
h>0 indicates the instability of the solution of the original
equation. The Hill's determinant method is preferable for
investigating the stability of the systems with parametric

excitation, because the equation
det [ ¥ (o) ] akiiod, (4.50)

enables to obtain the borders of the stability region for the
T-periodic solution. Having in mind that the values of the
elements of the matrix Y depend upon the parameters of the
system, the parameter values are obtained by solving the equation
(4.50) for the different values of «w . For investigating the
stability of stationary motion laws of a nonlinear system, the

'Hill's determinant techniques don't possess any advantages in



comparison with the transfer matrix approach, because the
dimension of the equation (4.49) isn't lower than the dimension
of the equation (4.47).

Investigation of stability by employing averaged equations.

Having obtained the stationary motion 1laws by the weighted
residual approach, it appears reasonable to employ the stability
investigation methods, taking account for the assumptions
employed by obtaining the motion laws.

Assume, that the small perturbations don't change the
presentation form of the solution in the subspace of basic
functions, but only influents slightly the values of the

generalized amplitudes. Employing the harmonic functions as a

basis and presenting the nonlinear term W(U,U) as well as the
motion law in the form of truncated Fourier series, tHe
time-averaging approach produces the following differential

equation (4.40) in terms of slow varying amplitudes
. = ’
B UA = A UA + WA + RA - (4.40)
Denoting the stationary solution as Uf(t): Uf= const, the

linearized equation for investigating the stability of this
solution is obtained as

- . BWA
XA =R A+ = b, XA g 451 )
al u
A
aWA
The derivative —— in (4.51) is defined using the relations
al
A

of the Appendix 3.2. The inversion of the matrix B isn't a
time-consuming operation because of its block-diagonal form, and
in the case of a diagonal mass matrix it is trivial. The
coefficients of the equatibn (4.51) are constant, and _%or
the stability investigation it is enough to evaluate the signslof
the roots of the characteristic equation employing the
Routh-Hurwitz criterion.

It appears worth to mention, that in the case of the

stationary motion law obtained by integrating the time-averaged

equation (4.40)' in the "slow" time from some initial values
UA(O) until the stationary value Uf s+ ‘the stability : of . such

motion is ensured. However, the stability concept here has its
approximate meaning, because the solution Uf itself is
approximate.

~+-Simplified stability test employing energy criterion. The

nonlinear system stationary motion law investigation methods
presented above require a considerable computational effort for
obtaining the transfer matrices as well as for solving an
eigenproblem of large dimension, or for obtaining the
éoefficients of a linearized equation and determinant values when
-employing the Routh-Hurwitz criterion. If the number of degrees
of freedom is large, the time-consuming computations at the
stability investigation stage may appear as prohibitive. However,
the approximate stability investigation can be carried out by
evaluating the change of the amounts of work done by external and
internal forces during one oscillation period when the
generalized amplitudes or the initial conditions are perturbed.
Such an approach was employed in [91].

The difference between the amounts of work done by the

external and internal forces during one vibration period equals
ey N (4.52)

where A.L — the work of internal forces, Ae - the work of
external forces.

In the case of the stationary motion law U*(t), obviously,
A=0 , because the balance between the amounts of work done by the

external and internal forces is the basic feature of the dynamic

- equilibrium of the mechanical system. A small perturbation of the

motion law leads to an increase of the internal force work (i.e.,
the increase of dissipation), and A>0 is obtained.

Assume that the stationary motion law defined by the values

U(0), U(O) at the begin of each excitation period has been

"obtained by solving the boundary value problem in time domain.

Integrating the equations of motion in time, the motion law

satisfying the condition U(T)=U(0) , ﬁ(T)=ﬁ(O) is obtained. The

time law of the U(t) being known, we consider the nonlinear

function W(U(t),ﬁ(t)) as the time function W(f) , and the

‘" equation (4.1) is considered as a linear one with the periodic

excitation R(t)+W(l). The difference between the amounts of work




(4.52) is presented as

ﬁ*(t)[ MU+CU+KU-= W(t) - R(t) ] . (4,53)

>
1
o o A

In order to evaluate A for the perturbed initial values

a(O), ﬁ(O), it is necessary to integrate the equation (4.1) from
these initial values during the vibration period [0,T], and to
substitute the obtained motion law ﬁ(t) into the relation (4.53).
However, it remains unclear what kind of perturbation should’ be
made wupon the initial values. E.g., we can choose the

perturbation

€y

—~
)

~
1}

(1 + =) U@
(4.54)

(el
—~

<2)
~

1l

(1 + <) WO .

If the value A > O is obtained, it doesn't guarantee the
stability of the motion law. However, the value A > 0O obtained at
several different perturbations, allows to expect the stability.
The value A<0O, obtained at any perturbation, shows the
instability of the motion law.

Assume, that the stationary motion law has been obtained in

terms of generalized amplitudes U:, Ut Sike= 5D Substituting

the time laws U(t)

Il

3
) Uicos(k-1)et + Ussin(k-1)st into  the
k=1

expression W(U, ﬁ) and expanding the obtained time law as a
truncated Fourier series, we obtain the amplitudes Wt, Wt.
Considering Wt, WE, R:, Ri as a polyharmonic excitation,
substituting it into the equation (4.53) and obtaining the
integral value, we express the difference between the amounts of

work as
P

A & }“ [ n(&-1)%e (UTC U + U7 U¥) -

k=1
~(k-1)m(UET ( RE+ WE) + UST(ORE+ wﬁ))] . (4.55)

The relation (4.55) is obtained, taking account for the
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symmetry of the matrices K and M . It is employed for evaluating
the difference between the amounts of work done by external and
internal forces after a small perturbation of the amplitudes of
single or several harmonic components as

flive (Sasump) Wt ie

e

(4.58)

k

ij

W by o

where Ut, UE — amplitudes of a stationary motion 1law, ensuring

A=0, and U:, Uz — amplitudes of the perturbed motion law.
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5. MOTION CONTROL OF ELASTIC STRUCTURES

There are two alternative approaches for obtainigé
programmed control laws. The first one is based wupon a taréét
function minimization considering the excitation forces gs
parameters and solving an optimal control problem with the fixéé
or varying time. The other approach employs a presentation‘ of
structural dynamic equations in modal coordinates with truncated
dynamic contributions of higher modes. The number of coordinates
with retained dynamic contributions is selected in order. to
obtain a unique solution of the problem.

A linear closed-loop control with the displacement and
velocity feedback is obtained by employing the inverse dynamic
problem approach, the prescribed motion of a structure ‘being
expressed as a superposition of exponent functions. In most cases
a solution isn't unique, and approximation errors are minimized
employing the generalized matrix inverse or representing a
problem in a subspace of modal coordinates.

A structural motion control synthesis employing logical
elements in a feedback circuit is carried out by resolving the
dynamic equations into modal components and employing a separéte
feedback for each of them.

The excitation laws ensuring the prescribed resonant
vibration patterns of structural nodes are obtained by solving
the inverse dynamic or optimization problems.

The original results presented in this chapter consist of
the development of programmed and closed-loop control synthesis
techniques based upon the inverse dynamic problem and dynamic
contribution truncation approach. The method is applied to the
motion control synthesis of structures with the logical feedback

eireuxt’
5.1 FIXED AND VARYING TIME OPTIMAL CONTROL

Gradients of target function. We consider the equations of

motion of an elastic structure as

MU+CU+RU=W(U U,p)+REZ, (5.1).

where M, C, Khxn— structural matrices of an elastic structure,
U;M— displacement vector, thf nonlinear function, pbd
parameter vector, H%xm— constant transformation matrix of an
input vector fmx1 into a nodal force vector. It is necessary to
obtain an input law f and the values of parameters P minimizing
the functional
T
Fe=e (VU )+ [vcuBiprat, (.2

o

defined upon the time interval [0,T]. The values at the end of

the interval are denoted through UT, ﬁT . If the control time T
is prescribed, the relations (5.1), (5.2) represent a fixed time
9ptimal control problem, otherwise a varying time optimal control
. problem is obtained. The maximum speed problem is obtained by
solving a varying time problem and assuming vy = 1.

The equation (5.1) may represent a programmed control system
as well as a closed-loop one. In the last case a proper choice of
parameters D enables to optimize a feedback circuit according to
the criteria defined by the functional Z.

In order to obtain the optimality condition we employ the
Pontriagin's maximum principle [130,115]. Assume the initial

approximations of the values of f(t), p, T and the corresponding

motion laws U(t), U(t) known. Assume &F, 8p, &1 being
infinitesimal variations of the vectors of input laws, parameters

- and the control time correspondingly causing the variations h(t),
h(t) of the motion law. Substituting the values f+&6f, p+ép, T+sT,

.U+h, U+h into the relation (5.2), we express a variation of the

functional as

%
53 = o, 68U +p, U +w(U_,U_,p)eT + J (v v rbw 6p)At . (5.3)
[}

B T

¥ Except the variations of the independent quantities &f, sp,

ST the relation (5.3) contains variations h, h of the motion 1law
that can be expressed through &f, ép, 6T employing the equation

(5.1). In order to obtain this relation the conjugate vectors
¥

A(t), #(t) are introduced. Multiplying the equation (5.1) by x




and by ' from the left-hand side and integrating during the time

interval [0,T] we obtain

T T T
J(xTMﬁ +ATCU + ATRUYAL = J \TW(U,U,p)dat + J B aL
[e] o o

(5.4)

T b 4 T
J(L*Mﬁ + 47U + LTKU)AL J ATW(U,U,pat + J LR gt
o (o] o

Replacing the right- and left-hand sides of the equation

(5.4) by their first variations, we obtain

— . y
" MU+ CU+EU- WU,U,p) -RI)T+
T

J AT (Mh + Ch + Kh)dt = | aT¢ g% 8P S RASEIAT s
o

; (5.5)

gt

prM U+ cU+KU- WU_,U_,p) -RIL) ST+

T

:
J 47 (b + Ch + Kh)dt = J 2 ¢ g% sp + R sf)dt ,
g o o
- aW a3 oW
where o Ki=1Ki— =21 ,0.0:=.C.— —
al al

Integrating by parts the integrals in the equation (515),
after some manipulation we express the values of h_, oS tﬁ%éugh

sU_, éﬁ as
T T
sU=h_+ UsT , 6U=h+ UsT . (5.6)

Substituting (5.6) into (5.5), we obtain

T ' A % 5 T T B
(AT+y:)(CUT+KU}-W(U;,UT,p)—RIT)éT + (XTM—XTCT—HTKT)UTéT +
T

+ Ll Ml - (KIMIC, R eU, + [GTMATEnTEonat -

o

i T
- J(ﬁ*M—L’E+y7ﬁ)ﬁdt-J(x*+L*)(g% sp + R 6£)dt=0 . (5.7)
o o

The relation (5.7) doesn't contain the values of any

quantities at the time point t=0, because the initial values are

assumed to be prescribed and, consequently, h(O):h(O)zéUozéUo—O.

Comparing the relations (5.3) and (5.7), we require the following

conjugate equations to be satisfied :

o s By ey R Y

Mx —Cx + Ko ¥ asos (5.8)
" NT . NT T

Mt Cop = T ’

their end values at the time point i=T being obtained from the

algebraic equation system

T

X sk Sy
M = GExT K o= ey ’ (5.9)

) ALY,
M + 1) = ey -
19
. : .+ As the number of unknowns in the system (5.9) exceeds the

number of equations, the end values of the system (5.8) can be

" determined as

)\T = = B, 7&,1_ =M Pu y Hp = M Pis . (5.9)’
iy s
Regarding the relations (5.8), (5.9)’, we express the
variation of the functional (5.3) as
T e oF o7
6% J (ouiilagiy do spiodiae 2esTo 4 (5.10)
S el ap aT
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oF . oF .. oW
where o= —SoR rSEARRE e Te ) T
of ap ap & (541

oF . s . . . ~ ~
pradCER (A gty ) (CU+RU =W (U, Uy, P)-RE )~ ATM-ALC o~ K U

The relations (5.11) present the gradient vectors of the
functional ¥ through the parameters p, control time T and input
functions f(t) at each time instant from the interval [0,T]. The
optimality condition is expressed as the equation system

oF oF aF :
N A o e = ) (5.12)"
ap af aT
that is to be solved together with the conjugate equations (5.8)
with the end values (5.9)’.

The solution of the system (5.12) in an explicit form can be
found in very few cases, therefore practically the minimum point
af ~the (functional ~F'. is obtained by employing gradient

optimization algorithms beginning from some initial approximation

By BV, ST
In the case of a fixed-time problem all the above presented

relations remain valid assuming the value 8T=0 and ignoring the

oF
derivative — .
aT oF
The values of the function — at the time points from the
af

interval t<[0,T] present the infinite-dimensional gradient vector
of stheasxfuncticnalwsFuys sHowever dny practical . cases . it ‘ds
reasonable to restrict ourselves with the finite-dimensional
control functions.

Let's present each component of the vector f(t) as a

superposition of a finite number of basic functions as follows
BCE)Y="tal" g(t)r . (5.13)

The components of the vector aw1(t) are the functions
gj(t), J=T,T composing a basic function system, and [a]rxm is
the coefficient matrix, in the i-th column & containing the

coefficients of the expansion of the function f(t) in terms of

the functions gJ(t). The components of the vector g(t) being

prescribed, the variation &f(t) is presented as
s1(t) = sia1hig(yia; (5.14)

Substituting (5.14) into (5.10), we obtain

T

. aF 3 aF aF
ég-J - Bia) BT D) 1 0L b BT 4 (5.15)
Bl af ap aT
Tt o
In order to obtain the gradient vector of the functional ZF
in the space of the coefficients a; , we transform (5.15) as
folilows:
o _ T oF oF
8F = } J—é(a‘)Tg(t)dt+J—ép dt + — sT , (5:16)
= af. ép aT
1=14 O * o
; oF oF
where — (t) is the i-th component of the vector —(1), and
ek . af

é(a}) — the i-th column of the matrix &[a].
Taking the transpose in (5.16), we obtain

! R oy Icaly o oF
o = } (J— g (1) dt)aa‘+J—apdt+_éT. (5.17)
L— af ap aT
L=1 o 1 o
Denoting in (5.17) the first integral through GI , the
variation 6F can be expressed as
2 ratToeg aF
57 = } P M L (5.18)
£ -t ap aT
1L=1 o
B i T ag ¥
R =J_ g (t) dt
» af
o 1
v The gradient vector of the functional ¥ in the finite-

hdimensional space of the elements of the matrix [a] is obtained

by presenting the components of the vectors G: in sequence as a

row-matrix




oF

= U SR i d Uy IV (5.19)
a[a]  § 2 m
oF
where is time independent.
alal

Truncation of dynamic contributions of higher modes at the

optimization of feedback parameters. In place of the variational

equation (5.5) the following system can be employed (see (1.13),
(1-22))

(1 6z, + dlag( u,) 6z, + dlag(s’) 6z, =
aVW L aW . - aW
= Al — (A 6z +A SZ_ ) + A, — A SZ + A, — S ,
b 1 aU 1 4 2 2 S aU  § 1 ap
©120)
2 T oW T oW d T oW &
| diag(w)) 6z, = A, ;E (A 62 +A 82Z.) + A, ;6 A bz, + A, 35 Sl

where notations coincide with those of the Chap.1, assuming R=0.

Representing each of the vectors X, n as two subvectors

[
x:[:‘], y:Lﬁ], we obtain the conjugate equations
2

2

> T T T 4T Tt TLLT i
I )\1_ ci.)\1+ [ki_kiz(kz) k12] )\1 5 _[kﬂ(kz) AZ+Ai] a_ﬁ *
(o.21)
» T T T \-1,,T e T B G
I ‘u1_ C1H1+ I:K1_k12 (kz) k12] Ht = [——]{12 (kz) A2+Ai] % 1
2 T : 1'6W -
where K =diag(e:)-K, , K-diag(el)-Kk|,, c =diag( fibues gl s *
oW aW aw
i DI o L0 T T,
ku: A; 5 A1 : kiz_ Ai oU A2 Y kzz“ Az 8U A2

Considering the case ¢ = 0 in the expression of the target

functional (5.2), the equations (5.21) are to be integrated with

zero end values, i.e., X1=K1=H‘=H1=O- The subvectors A, i
i T T »

at each time point are obtained from the relations

422

YT
x =(kT )—ikT x —(kT )—1A'r 0 '
2 2 Ly 2 2 oU

(220

A T (=1, T ° 7 g T
sz(kz) kxzui_(kz) A2 [5 i
The gradient vector of the functional ¥ in the space of
parameters D is obtained from the relation

T

oF 54 S T To.. ¥ T =%
e [(x1+ K1) AT 4 (e ATy AT ] CLorfh il B
ap % ep

The advantage of such an approach is that the conjugate
system (5.21) has a considerably lower dimension than the source
equation (5.1).

5.2 INVERSE DYNAMIC PROBLEM APPROACH FOR CONTROL SYNTHESIS

5.2.1 Programmed control synthesis

Consider a linear mechanical structure governed by the

equation of motion

MU+ CU+EU=RZT. (5.24)
where thn, Cnxn, F%Xh— structural mass, damping and stiffness
matrices, U;“>— nodal displacement vector, me - the matrix

transforming the input excitation fmx1 into the equivalent nodal
forces, where the relation m<n is held.

To solve a programmed control synthesis problem means to
obtain an input vector f ensuring a prescribed motion law U(t).
Employing the inverse dynamic problem approach, the control law

synthesis is based upon the symmetry of the structure of the

 mathematical model and upon the inverse of the operations
Véresenting the essence of the controlled object [115,129]. In the

.case of the elastic structure (5.24) the problem is complicated

by the circumstance that the range of the matrix R and the number
of control functions f are significantly less than the total

dimension of the structural equation. As a result, the matrix R

23
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can't be inverted and f can't be immediately obtained from the
equation (5.24).
The most simple alternative is to employ the least squares

approach and the generalized inversion of the matrix R ([48,80]):

YRt Nt ou+xTY L. (5.25)

Nevertheless, regarding the case of elastic structural
vibrations in the lower range of eigenfrequency spectrum, a
control in the subspace of modal coordinates is preferable.  In
order to obtain such a control 1law, the equation (5.24) is

presented in truncated modal coordinates as

Iz +disg( u) z, + dlag(w?) z, = AT R T , (5.26)

N 2 i
diag(w)) z, =4, R T .

Relaxing the control quality requirement we restﬁigt
ourselves with ensuring the necessary motion law only for sezeral
components of the vector U(t), and presenting them as U(t).
Forming the the matrices Zi, 2; from the corresponding TrTows of
Al, Az , we obtain the relation

U=4az +482 . (51 27)

After some manipulation, from (5.26),(5.27) we obtain an

equation of motion
w .
~

A:iuz -5 dlag( 'ux) A?Ui % dlag(&f) A:‘Ui &
; it 81 % 1 T ¢ B
= [ diag(we;) 4, diag( /w:) AjutiAT ol sReT (5.281

i E G(t) is prescribed, the programméd control "I(L)"is
immediately obtained from (5.28) assuming that the number of
displacements in ﬁ is equal to the number of modes with preserved
dynamic contributions (i.e., the matrix Z; is to be square and
nonsingular). The nonsingularity of the right-hand side matrix in

(5.28) is necessary, otherwise the problem is to be solved

employing the least squares approach.

5.2.2 Linear closed-loop control synthesis

Approximate control synthesis. The practical use of the

programmed control laws obtained in Chap.5.2.1 is that they can
be employed as a basis for the closed-loop control synthesis. The
closed-loop control can be obtained by prescribing the necessary
motion laws linearly related to their time derivatives (e.g., a

superposition of exponent functions [115,129,80]). Consider a

] linear system presented by the structural equation of motion

(5.24). It is necessary to obtain the closed-loop control f=f(U)

_such that the motion of the structure would match the prescribed

motion law UeEY '= U*(t). Consider only such aperiodic motion laws
U*(t) that can be presented as
— A u
iigg 4 A N i e ey oL A L (5.29)
H=X A—p

where U - the displacement vector defining the end state of a

uéffﬁcture, and the exponents A<0, wu<0 .

Obviously, the motion law (5.29) satisfies the relations

LU*(O)=ﬁ*(D)=O, U*(w)zﬁ, ﬁ*(m)=0 (i.e., we consider an elastic

transfer of a structure from one stationary state to another.
Assume the results of measuring the displacements and velocities
of. the structure points at each time instant being presented as
veétors

&0(1: Qkxn Uh)u~ ¥ éo(i: Qkxn Unxi £ (5'30)

where Q — the transformation matrix.

In order to obtain a completely observable system it
necessary to match the condition rank(Q)=n, that is impossible in
most cases. Therefore the reconstruction of the values of the
vector U employing the measurement results g isn't wunique.
Employing the generalized inverse of matrices, the vector U is

presented as

U £ otg @ g (5.31)

- where, I denotes the unity matrix, and ¥ is an arbitrary vector.
‘Selecting the value of y as




YA AGTE

where th — constant matrix (unknown for the present), we present

"
the relation (5.31) as

Uisopegh wiche='gigy 00 g Q@E (5.32)
Denoting through F the equivalent nodal force vector
TM=NR s

a nodal forcing law ensuring the prescribed motion law U*(t) is

obtained as
ol L I (5.33)

With regard to the equation (5.29), the accelerations U* are

expressed through velocities and displacements as

55 T 00 . Rl s (5.34)

As only the values of g and g can be measured, employing the
relation (5.32) we obtain

. L e e (5.35)

where ﬁ S (I - R+R) Hidleuy and H%xn— the constant

matrix unknown for the present.
Substituting (5.35) into (5.33), we obtain

P aF i+ BB ad s (5.36)

where 7 = M (0 = uy 400 L8 = Ko W Pi= A ML :

Now the values of the input functions f are to be expressed

through the measuring results g , g . Employing the least squares

approach it can be done as follows:
S ot (5.87)

Finally, the obtained closed-loop control system can be
presented as shown in Fig.5.1. According to the relations (5.36),

(5.37) the input ffh is approximately obtained as

R . Elastic structure AL Q

Fig.5.1 Linear control system obtained by means of the inverse
dynamics problem solution

Elastic structure i Dutput of LC
BN L Start”
Start” Zero”
.Zera" Logical U - s
_Stop" circuit 0 u-u
Stop” b
a b

Fig.5.2 Control system with the logical feedback circuit

. Elastic structure

: W
R o he.d bogienl 4 e ) fee-o
circuit Lot
Logical
ticcuit Yiin P Uin

Fig.5.3 Control system with the logical feedback circuits for
each modal coordinate




*=RPU, (5.38)

n
and the resulting motion of a controlled structure is
MU+CU+KU=RTZL_, (5.39)

where C = C - RRVQQ, K = K - RRSQQ .

Taking account that the considered motion of the structure
can be considered as a transfer between two states of static
equilibrium, it appears more natural in place of the approximate
relation (5.38) to employ the static equilibrium equation for  the
obtained closed-loop system at the time point t = @ as

BYaREE 4 (5.40)

Consequently, the input vector ffn can be obtained from

the relation
in

*oREKU (5.41)

Approximate control system in a subspace of modal coordina--

tes. Consider the equation system . (5.26) with the truncated

dynamic contributions of higher modes in place of the equation
(5.24). We require that only the motion law of m d.o.f. would
match the time law (5.29), and the displacement vector of these

d.o.f. would be represented by the vector U :

~ ~ A o
TR (TP 19 Logs8), M giagn (5.29)
H=A A=

In place of the matrix Q we consider the square matrix Q,

obtaining the relation

(551 4

Selecting the number of retained dynamic contributions of
the lower modes being equal to m and carrying out the
manipulation similar to (5.32)-(5.35), we express the cont;ol
force vector as

[ ~

P* =V g+ 5 g+l (5.36)
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where

~ o~ -t ~ ~ ~
V=[] Redtag())a s atag(’ /208 R| [atag( )8+ (w)a]t] Q8
= ~ o~ b 3 ~ ~ ~
5= [a] Reing(e])a " atag(! /208, R| [ateg(d)a*-aua]T*,

~N o~ -4 ~
P’:[AIR+diag(wf)A;’Azdiag(1/w:)A:R] AuA:

~ooN ~NoN

In place of the blocks RVQ, RSQ in Fig.5.1, the control

system now contains the blocks V’, S’ correspondingly.

Obtaining a stable control system. The expressions of the

feedback circuit coefficients contain the arbitrary constant
matrices G and H (see the relations (5.32), (5.37). It follows,
that the values of these matrices can be selected in order to
ensure the stability of the control system. Obviously, in
general, the stability isn't guaranteed by employing the
synthesis relations presented above because the structure status
vector U is expressed through the vector of the measured
quantities approximately by means of the relation (5.31). The

arbitrary selection of the matrices G, H presents a possibility

‘to ‘achieve compromise and to ensure stability of the control

system simultaneously obtaining a motion law closest to the
prescribed one. For this purpose the Appendix 4 presents an
algorithm based upon a gradient procedure of minimizing the real

parts of the eigenvalues of a closed-loop system [58].
5.3 SPEED-UP CONTROL SYNTHESIS
The closed-loop control system synthesis approach presented

feedback
amplification coefficients. Nevertheless, in many applications it

in Chap.5.2 enables to obtain linear clrecuit
isn't desirable to employ linear feedback circuits. As preferable
appears the separation of the input and output of the system by
employing logical feedback circuits. We'll regard the input of
the logical circuit able to acquire arbitrary values, and the
oﬁfbht - two or several fixed values (e.g., +1;* 0, —=1). In
general, such a system can be classified under speed-up control

systems [39]. A formal logical feedback circuit synthesis is a

129



complicated task, therefore it is usually obtained from general
engineering considerations employing available logical eleqeqts.
A very simple tracking control system with one input and Bhe
output signal is presented in Fig.5.2. Such a control is often
insufficient for elastic structures with many d.o.f. because it
doesn't damp the residual elastic vibration due to higher modal
components.

We'll show, that the control system synthesis regarding
several modal coordinates is possible employing the equations 'of
motion with truncated dynamic contributions of higher modes. 1In
such a case a separate logical circuit is employed for ensuring
control of each modal coordinate. As a start point for the
synthesis we employ the equation system (5.26), selecting a
subset of modal coordinates in order to obtain a square and
nonsingular matrix AIR of the dimension mxm. In the equation
(5.26) we make the substitution Y.; (AIR)dzl. Dgyote the vector
of measured quantities of the length m through U, and from ‘the
corresponding rows of the matrices A;' A, the matrices Zi, Zz
are obtgined. Prescribed displacement values are presented by:.the

vector U““ From the definition of modal displacements follows
the relation

7 =ATMU,m,

in

and the following equality takes place:

e o W Ay
U - U.m = Ai(zi—zim) + Az(zz—zz_m) 5 (5.42)
From (5.42) it follows
— AT T A A4 1 T
zZ, =4, [ U - Azdlag( /w:)A2 Raf 4 o (5.43)
and, consequently,
¥,= (ATR)AL U - Azdiag(1/wz)A: g (5.44)

Then, denoting

v = aaisg('/2)aR , S = IRY'AT, Q= (ATR)VAY
: (5.45)
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the control system can be presented as shown in Fig.5.3. Inputs

of logical circuits can be supplied with the generalized velocity

vector y;:QU, if it appears necessary for the operation of the

control algorithm and if the measured values of the velocities

are available.
As it can be seen from Fig.5.3, in addition to the main

_feedback we have obtained an additional feedback in the control
‘circuit. It can operate asynchronously assuming infinitesimal
. delays in the electrical control circuit, as well as

_synchronously employing the clock frequency significantly higher

than the frequency of the highest mode with the retained dynamic
contribution in the equations (5.26).
The obtained control system can appear non-optimal because

of neglecting the higher mode dynamic contributions as well as

- -because of an heuristic approach defining the basic logical

circuit. Therefore the control system can be optimized employing

the optimum system control techniques for obtaining the values of
:some parameters (e.g., time points for voltage reverse, the

_magnitudes of voltage pulses, the width of insensitivity range,

etc.). The techniques for solving such problems are presented in

Chap.5.1. If logical circuits are employed, the expression of the

function W(U,ﬁ,p) contains the discontinuous functions

Ou . X< =y T X,
" h(x-a)= { Y s sign{x-a) = O, x=a ,
t, 8, 1, a”

The derivatives of such functions with respect to the
variable X as well as with respect to the parameter & contain
the S-functions. During the computation we employ the numerical
equivalents of these functions presented in Fig.5.4. For example,
the logical function presented in Fig.5.2 results in a

block-diagram in Fig.5.5. Its mathematical expression is

¥(U,p) = h(|U-U, | - p) [ b(U-U) ¥ (1 - nw-g, 00 W] .
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Fig.5.4 Numerical equivalents of discontinuous functions

Fig.5.5 Block-diagram of the feedback algorithm presented

in Fig.5.2
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The following derivatives with respect to U and P can be

employed for obtaining the gradient vector of the target function:1

N o 25(|U-U_|- p) s181(U-U, ) [ BU-U, W+ (1 -0 )" ]+
aU

+ B(U-U, | - P)[ siga(U-U,) ¥ - siga(-y) ¥ |,

v - .
— = -26(|U-U_ |- p) [ B(U-U W+ (1 -h@U W ],
e

5.4 FORCED RESONANT VIBRATION CONTROL

Problem formulation. If piezoelectric vibroconverters (VC)

are employed as input links of vibrodrives, it 1is necessary to
excite their vibration ensuring the prescribed motion laws and
paths of some of their d.o.f. Although in reality VC operate in a
nonlinear interaction with other 1links, here we restrict
ourselves with the linear vibration law synthesis problem. Such
an approach appears as reasonable from the engineer's point of
view, because at the first approximation many mechanical systems
containing VC are designed considering the ability of free VC to
produce prescribed vibration paths.

We consider the structural dynamic equation (5.24) as a
mathematical model of a VC, the excitation frequency being close
to one of the resonant frequencies (only in the vicinity of the
resonance it is possible to obtain sufficiently large values of
the vibration amplitudes). Presenting the problem in modal

coordinates, we obtain
B, Zadiwi B drcRalineg  A1=TOR (5.46)

and the motion law is approximately obtained by superimposing the
contributions of the modes possessing the eigenfrequency values
in the vicinity of the excitation frequency, and neglecting the
contributions of the remaining modal components.

Three problems of different complexity can be distinguished:
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a) exciting vibrations of the prescribed mode, b) obtaining;

prescribed planar or spatial vibration paths in

structures by means of multi-phase excitation, c) obtaining

prescribed planar vibration paths by means of a single phase

harmonic excitation in the vibroconverters possessing several .

modes with approximately equal eigenfrequency values.

Exciting vibrations of the prescribed mode is the simplest

synthesis problem. Assume that it is necessary to excite _the
vibration of the i-th mode. If the excitation frequency w = W, ¥
in place of the system (5.46) we consider only the i-th equation,
presenting the equivalent excitation force of the i-th mode by
the right-hand term 6:Rf . The most effective excitation of the
modal vibration is obtained the equivalent force being of the
maximal magnitude. Assume the elements of the vector T being
hzrmonic functions, i.e., f = IASinwt with prescribed amplitudes
o

excitation force of the i-th mode is ensured obtaining the

In this case the maximal amplitude of the equivaledf

forcing amplitudes from the relation

1} = sign (5] R), (5.47)
where (é:R)j denotes the j-th element of the row-vector STR.

Prescribed planar or spatial vibration paths in symmetric

structures by means of multi-phase excitation are obtained, if

vibrations of several modes are excited simultaneously. The
vibrations of each mode are to be excited with the prescribed
phase shift Ap. Assume the eigenfrequencies of several modes
being coincident, as it is the case in the symmetrical VC, such
as rings, circular and square plates, cylinders etc. Exciting
simultaneously the vibration of i-th and j-th modes with the
eigenfrequencies D A s : , the equation system in modal

coordinates appears as

2+ Z +0°2, =6] REMsin ot i
‘ j (5.48)

Zj+pjzj+wzzj=6: RfMsin(wt+ap).

Nonzero values of Ift, f:j in (5.48) are not allowed to be

coincident, i.e., Iftffj: 05 k=1,m . It means that the same

symmetrig.

input excitation can't present two harmonic signals with
différent phase shifts, otherwise summers of input signals are
neécessary. Taking on account that the 1left-hand sides of the
equations (5.48) are identical, the relation between the
vibration amplitudes and phases of zt, zj are determined by the
relation between the amplitudes and phases of the excitation
signal. If Ap is a prescribed quantity, the amplitude values of

the elements of the vector IA satisfying the relation

sT R A
: ‘ = o (5.49)
6: ) L
5%& to be obtained, where a - prescribed ratio between the

vibration amplitudes corresponding to the modes i and j.
If there is no possibility to satisfy accurately the

s rélétion (5.49), an approximation is to be found by solving the

oﬁEimization problem

max | &7 R £*| .

e
e gl OO y (5.50)
ol e ol P T o

k? "k
Such a problem can be solved, e.g., by means of an

exhaustive search procedure or employing other discrete
optimization techniques. If other values of the amplitudes are
allowed besides f*,—f*, only the constraint ffi,ffje { f*, —f*)
of the optimization problem (5.50) is to be changed.

Obtaining prescribed planar vibration paths by means of

single phase harmonic excitation is possible if the

eigenfrequencies @iy uj of two modes are close but not
coinciding. The excitation frequency « is selected in the
vicinity of the two eigenfrequencies QL; wj; w. The formation of
the phase shift between the two modal responses is presented by
the amplitude-frequency and phase-frequency characteristics (AFCH
and PFCH) in Fig.5.6. The vibration phase shift Ap(w) depends

upon the difference between the eigenfrequencies ©  and @, and

‘upon the Q-factor of a vibrating system, i.e., upon the peak

shapes of the amplitude-frequency curve. In general, peak values

depends upon the selected excitation law and aren't known in




advance. The algorithm for obtaining the excitation law reads as

follows:
Algorithm 5.1

1. Consider the equation system

270 L L T e S MR
1 L L v 1 L (5.51)

g GO G SR by Y
J 3 J J J J

For Z, and Zj the PFCH are obtained. The AFCH are obtained
for unity excitations, i.e., assuming the right-hand sides of the
equations of the system (5.51) being equal to sinet.

2. According with the PFCH (independent of the excitation
amplitude) the w value is obtained ensuring the prescribed phase
shift Ap. The amplitude values of the two AFCH corresponding to
this » value are marked ({:‘(,AL and ajin PFig:.5.6 .

3. The prescribed ratio of the generalized displacement

Z.
amplitudes being equal to Z: = a , the excitation vector IA is
3
obtained satisfying the relation
g H1a
=2 e (IS
B B
i i

During.the step, 3 .of . the Algorithm 5.1 the " following
optimization problem is to be solved:

max | & R ™|
IAL

with the constraint (5.52), .03

I R

The constraint f2fM= 0, k=T,m , isn't included into
(5.53), because the phases of input excitations are coincident.
As a rule, the value of w ensuring the phase shift Ap between the
two modal responses isn't unique, therefore the algorithm should

be applied at several excitation frequency values in order to

obtain the optimal solution.

Fig.5.6 Obtaining a vibration phase difference between two
response components at a single-phase excitation




PART 2. APPLICATIONS

Vibrodrives (VD) are the mechanisms converting high-frequen-
cy vibrations of an input link into the directed stepwise or
continuous motion of an output 1link by. means of essentially
nonlinear mechanical interaction forces.

VD possess several specific features making difficult the
immediate application of the existing theory of vibroconveyers
[79,122,123] and vibro-impact systems [50,133]. Distinquishing
features of VD are small vibration amplitudes (several microns)
and high vibration frequencies (dozens of kHz), therefore during
the interaction between input and output links a contact surface
elasticity is to be taken on account. Microimpacts can't be
assumed instantaneous, as an impact time takes a significant part
of a vibration period. Consequently, a stereomechanical model
characterized by a velocity restitution ratio in general is
insufficient for presenting the contact phenomena in VD.
Moreover, a resonant modal vibration of the input 1links wusually
is employed in VD, therefore the distributed parameter or finite
element models are necessary.

: An overview of numerous theoretical and experimental
investigations of VD is presented in [37]. The main results of
research have been presented in [56,116,47,119,94]. For obtaining
adequate mathematical models of VD a correct representation of
the contact interaction is of primary importance. Together with
the stereomechanical impact models, the combined local and wave
contact interaction models have been taken into account, the
viscoelastic surface rheology approach being commonly employed.
The finite element models enable to present the complex geometry
of the links of VD and the inverse piezoeffect in piezoceramic
input links [71,133]. Finite element formulations based upon the
updated Lagrangian approach enable to 6 take account for large
strains taking place in the contact zone [117,10]. Nevertheless,
the contact zone investigation problem appears to be of similar
complexity, and often even more complex than the global problem

of obtaining the motion law of a VD with a prescribed contact

interaction characteristic. Therefore usually compromise
formulations are preferable, restricting with small displacement

finite element models and the viscoelastic rheology of the




contact interaction [15,36,97,71]. The surface rheology approach
can be regarded as an extension of the oblique impact phenomeno-
logical models with lumped parameters [133]. As promising appears
an approach taking account for rigid body motions of finite
element models of vibrodrive links, a full finite element
formulation of free and restricted rigid body motions = of
deformable bodies being presented in [40].

An effect of sliding between the links of a VD under the
sliding friction forces is to be regarded simultaneously with the
deformation of an interface layer. Usually local contact effects
are assumed independent at each separate contact zone. The more
complex models are to be employed for the VD with the continuous
contact zone [71].

A vibroconverter(VC) should be regarded as the main part of
a VD. VC produce mechanical vibrations under the high-frequency
alternating voltage applied to their electric terminals. Their
operation can be based upon different effects, such as
electrostrictive, piezoelectric, magnetostrictive etc. [140].’A

As a rule, the operation of piezoelectric vibroconverters is
based upon the excitation of their modal vibration ~employing -an
inverse piezoelectric effect. In general it presents a complex
set of phenomena in polarized dielectrics and connects elastic,
electric and thermal properties of piezoelectric materials. The
constitutive relations of electro- and magnetothermoelasticity
are obtained in [11,33,20]. The investigations of electro-
mechanical vibrations in piezoelectric rectangular plates> and
axisymmetric shells have been carried out in [83,84,96,99]. 1In
[102] the behavior of piezoelectric vibroconverters in an
electrical circuit has been presented by means of equivalent
four-terminal networks, the reference [100] being an overview of
various engineering applications.

The finite element techniques for the piezoelectric struc-
ture analysis have been developed in [21-24] by Y.Kagawa et al.
In [104] the techniques have been applied for the transient
vibration analysis in two-dimensional piezoelectric VC, and‘ in

[3,71] - for the dynamic analysis of input links of VD. %
e
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IR i

_charge g, and an electric potential P and upon Sh S

6. MODEL EQUATIONS OF VIBRODRIVES

In this chapter finite element models of piezoelectric
vibroconverters (VC) and vibrodrives (VD) are obtained and the
dynamic characteristics of VD are formulated.

>Employing the variational formulation of thermopiezoelec-
tricity, the relations for obtaining matrices of piezoelectric
continua finite elements and the relations for presenting the

properties of VC as electric circuit elements are obtained.

Several energy dissipation models during the vibration of a VC

are considered. The contact interaction models for point-
interaction and travelling wave VD are obtained employing a small
displacement finite element model and phenomenological models of

an interface between contacting links. A full model of a VD is

presented taking account for rigid body motions of the vibrating

iinks, the finite element models of each link being presented in

truncated modal coordinates.
6.1 FINITE ELEMENT MODELS OF PIEZOELECTRIC VIBROCONVERTERS
6.1.1 Variational formulation of thermopiezoelectricity

Consider a piezoelectric body occupying a volume V and
bounded by a surface S . The surface S is divided into parts

8,US,=5US =85S, =5 such that S, n S,= S, nS,=5, nS,= 0,

~n being an outward normal vector to the surface. Assume a vector

of body forces f = (X,Y,Z)T acting inside the volume, where X,Y,Z
- components of the body force vector in the directions of the
Cartesian axes. Upon the surface part Sa acts a prescribed

surface force vector & = (Xn,Yn,Zh)T, and a displacement vector

o : e
= Oﬁs,ués,ués) is prescribed upon SU. Similarly, upon SD,SP a

e 2 heat

flux V., and a temperature 6_ are prescribed. In the volume V

{iss ; T
: dlsplacemenfs a=(u, U, ), strains e =(s ,2,,5 .7, ,%,,7,,),
stresses o = (o ,0 ,0 ,t__,t. ,7v._ ), an electric field vector
T ES 2 3 23 i3 412 T
E =(E1,E2,I;), an electric displacement vector D = (Di,Dz,Da) :
thermal flux vector h' = (hi'hilhb) as well as an electric

potential ¢ , a temperature deviation 6 from a certain positive

reference temperature eo and an entropy density »n will be
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considered. In

the following we employ matrix differential

operators
[l
8o Bo@)
a3
- L
a ax
y 0 0 T 3. o
ol & P S . av..|
3y 9x g
a a 3z
0 G TN
8z Jdy
3 3
B e

and an outward normal vector n direction cosine matrices

-cos(n,x)
0
0
cos(n,y)
0

cos{n,=z)

L

0 B tiod
cos(n,y) 0
coS(n,x)
0 coS(n,=)
;&= | cos(my) -
cosS(n,x) 0
cos(n,z)
cos(n,z) cos(n,y)
0 cos(n,x)

Employing the matrix notation, we present the equationslof

thermopiezoelec

o2
]

=]
1}

tricity for the volume V as [11]

P Rs Toul T envTy

=l e S (61
208 0 06 T3

V. L e

—a - oAt P (6. 20)
-k a® , eV ;

cF (e - so) —e B TE M S e M

o fre)hiEFLE , =F; (6.3)

kT( e - so) L e flae, el
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where k - thermal conductivity tensor, <~ stiffness tensor under
constant electric field, 5°— dielectric permittivity tensor under
thermal

constant

constant strain, e - piezoelectric stress tensor, A -
stress tensor, 1 - pyroelectric tensor, o - material

{a = p c, 9: , where C, — specific heat under constant volume),

p - material density, 2d, aff= initial strains and stresses.

The boundary values defined by surface forces, displa-

cements, charges, potentials, temperatures and thermal flux upon

the surface parts SU, So, SP' SD, Ss’ Sh < S are presented as

L -
Ao =g, , < Sa 3

(6.4)

s = ¥X S

s U
W =% (6.5)
P:PS 'GSP’
et (6.6)
8 =8 JEES L i

s =]

Integrating by parts and applying the Green's theorem, it can
be shown that for the differential operators A and a presented
- : T P
above, arbitrary vectors ¢ =(E£,52,Ea) P =(x‘,uz,x3,n‘,x5,n6)
and a scalar function { defined in V and upon the boundary S the
following relations take place:

J(A ) a dVZJETA; 2 dS—J:TATu v, %
v s v

(6.7)
J (a E)TR dv = J /4 a; 2 B ghag it J L aTu dv 1
v s v

Employing (6.7), we'll present the equations (6.1)-(6.6) as
integral identities.

ithe ftrue 'values o, 2, u, D, B, ¢, 7, W, &, i.e., satisfying
the equations (6.1)-(6.3) and the boundary values (6.4)-(6.6),
have unique values because of the theorem of the

solution of the system (6.1)-(6.6). Consider the class of virtual

uniqueness
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quantities o, D, h, %, satisfying the equations (6.1) and the

boundary conditions, and the class of virtual quantities Z*, G‘,

E*, 5*, 5*, satisfying the equations (6.2) and the boundary
conditions. Though the relations (6.1),(6.2),(6.4)- (6.6) don't
define the virtual quantities uniquely, the true values belong to
the classes defined above.

Employing the identities (6.7), the equations (6.1)-(6.2)
and the boundary conditions (6.4)-(6.6) it can be shown that the
virtual quantities satisfy the following integral identities:

-

J'z";dv=Ja"gsds+Ju;A;;ds+Ja‘"(r-pa>dv,
v s s v )
o o
— T — — T =
4js Dde—JpquS—JpsastS, (6.8)
v =
D P
[(a§*)TEdV=Jev dS+J6(6°5) av .
v s v
L h
Assume
3:0,5_1),T;:n,?:s+és,§‘:£+é£‘,
K:h,?:u-&—éu, ?=p+ép,§*=6+ée,ﬁ*=".lx,
where o, ', ,"D, ‘"E"p, 7, h, 8" -~ the true 'values, satisfying
all the equations of thermopiezoelectricity (6.1)-(6.3) and the
boundary conditions (6.4)-(6.6), & - variations of the true

values, Sz .= A &G 5 OB = a 8P s
Substituting into (6.8) and taking on account that Su=0
upon S , Sp=0 upon Sp, &8=0 upon Sgr and that the true values

satisfy the equations (6.8), we obtain the variational identities

J se'o AV = J <5uTsst + J su’ (£ e pu ) @ ,

v s v
o

1]

- [ s qas (6.9)

s
D

4 JéETD av
"

i

LJ (as8)"h QY = J se v_dS - soj 0 n) AV .
N v

Now we refuse of the assumption that o, D, h, 7, ; are the
true values, supposing that they only satisfy the identities
(6.9). Employing the relations (6.7) immediately for the
left-hand sides of (6.9) and uniting the obtained identities with

(6.9), we obtain

J su’ (A;as— gs)dS - Jéur (ATa + £ - P:l)dV =07
v

o

{ [ 60 alp -q8s - [seTa™> av =0,

s v
D

Jée (a;h - vs)ds - J.és (aTh +eo;7)dV = 4B £
v

K

The values of du, Sp, &8 being arbitrary, the last_relations
impose upon ¢, D, h, n the requirement to satisfy the equations
(6.1) and the boundary conditions upon SO,SD,Sh. Thus the system

(6.9) contains the equations (6.1) and the boundary conditions
upon SO,SD,Sh. Adding to this system the equations (6.3) and the

boundary conditions (6.4)-(6.6) upon SU,SP,SQ, we obtain a

thermopiezoelectricity problem formulation in terms of
displacements, potentials and temperatures. As a result, if u, ¢,
& satisfy the boundary conditions (6.4)-(6.6) upon Su’Sp'Se and

the integral identities
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-

[(Aéu)T(cEA u+ e ap- x 8)dV + I équ (l:x ay. =
v

N

=J su’g_dS + J Su'f av + I(A su)Tc®e_av - I(A su)To_av ,
s v v v

3 5 (6.10)
J(a ép)T (eTA u - 3%a p+ 1 8)dV = J Sp qst + J(a quo)TeTsodV 5
v v

=
q

J(aée)Tk a e dv + eoIés B, S 1Th s Oy = — J se v_dS ,
'

L N s

they satisfy all the equations of thermopiezoelectricity and the
boundary conditions, i.e., they are the true values of
displacements, potentials and temperatures. The obtained integral
identities can be employed for obtaining the finite element
method relations for piezoelectric VC analysis.

6.1.2 Finite elements of piezoelectric continua

Assume the volume occupied by a piezoelectric body being
divided into finite elements. Consider the volume V° occupied by
a finite element (FE) with the nodes 1, Jj, m,..., bounded by
the surface 3° . The status of each point of the FE is completely
defined by the displacements u, potential ¢ and temperature 6 .
According to the general scheme of the displacement formulation
of the finite element method, the values of u, ¢, & at each point

of a FE are expressed through the nodal values of these
quantities as
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a(X,y,2)

i
=
I
=
=
=
x
(-_-:1-

IiEya - (6.1

i e(x,y,2)=12 =1[0L,L.,1L

J KR

i
Hd
®0
i
d
e
dJ

6(x,¥,2)

‘where N, L, P - form functions, UAL = UAL — nodal displacements,

ai
% - nodal potentials, © - nodal temperatures.
v 1
Denote B = A N , BE =S T BT = a P . Substituting (6.11)

into the integral identities(6.10) and regarding that du = N ST
Sp = I 2° , 66 = P 66° and that the identities (6.10) are valid

;fof arbitrary values d&u, Sp, 58, we obtain the equation system

MAT® b o B D ek 5Blalind | 406" =aiBlls,
G LS A R =
H°e + 6, V'U° - e WTs® + GO = Z_,

" where the FE matrices are defined correspondingly as mass,

stiffness, electromechanical, capacity, thermoelastic,

thermoelectric, heat conductivity and heat capacity matrices:

M® = JNTp N v ,

K- [ F B, - [E B 0,
ve ve v

1

e s o T e T.lPdV,
s*~ [ B] & B, a7, V= [Eaza,, ¥ [ =
VQ VQ
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¢*- [BxB a7, H=os[PPav.
i Ve

The vectors F°, Q°, Z; are defined as follows:

B

= [ Negas + [N av 4 [ Beme,av - [ Bo,av
So ve ve ve
o
] b o o ' :
Q" = [T'q8 + [BleTe,av , 2z =- [Pves . ;
SQ VQ o
D

Surface integrals in the latter relations can be nonzero
only if a FE is situated at the boundary of a piezoelectric body.
After assembling the structural matrices, the equation system can
be presented as

o TrO N poeige ST YRy char AERA b
0 0 oO0]|le|+o0 oregar @ Pree. w jI'e ="
0 0 0J{e) |s,V oW H]|e o < Z,

(&s12)

If at the nodes of the structure additional forces are

applied, they are to be added to the corresponding components of
the vector F .

Consider the thermal flux boundary condition in the form
Vo =D (e - St 90) ;

where D - heat exchange coefficient with the environment, ew -
temperature of the environment, 9, i reference temperature.
Fniisach ‘a _case ' dit is ;easy .to.. show, ‘that_ _the heat

conductivity matrix G° and the vector Z: can be presented as

¢*= [ 8] x B, @+p PR , 2

o

[Bce-2m. .
¥ B s,

If the reference temperature coincides with the environment

temperature 6, the equality Z: = 0 takes place.

In a high-frequency mechanical vibration analysis of VC the

coupling terms GOVTﬁ . —GOWT; and the heat conductivity term H é
can be omitted in (6.12) without causing significant errors. 1In
such an uncoupled formulation the analysis procedure is
decomposed into thermal analysis and piezoelectric vibration
analysis problems.

A VC employed as an input link of a VD always is to be
regarded as an element of an alternating current circuit,
therefore its electrical characteristics present a considerable
interest. Let's omit thermomechanical and thermoelectric terms in
(6.12), assume zero mechanical boundary conditions upon SU as

us=O and F=0 and regroup the components of the vectors @ and Q
: % Q
presenting them as & = [@1]' Q = [Qi]' where the index "1"

corresponds to the nodal points on the electric terminals of a
e .. and the. index "2"
inclusively the nodal points of the surface SD. The charges Qz of

to the remaining nodal points,
the part of a VC without electric terminals can be assumed being
equal to zero, if only the electric field lines don't leave the
volume occupied by a VC, what is practically always the case.

Regrouping correspondingly the rows and columns of the structural

matrices and assuming a harmonic vibration law U = Ucoswt, we
obtain
KoM T, T 10U 0
4
Ts. —Sii _Szz §1 I Q1 3 (6.13)
i T
T2 _Siz _Szz ]

In general,the charge Q1 in the left-hand side of (6.13)
isn't known. Nevertheless, if the potentials @ are known, the
number of unknowns is equal to the number of equations. In the
case when 2, isn't known, for the harmonic time law of the input

b&tential the charge Q1 is related with 3, as
I-jeq =Y = |, (6.14)

where YE &= [yUJ — input electrical admittance matrix, each
component yﬁ presenting an admittance between the nodes 1 and J,
and I -vector of nodal currents. An explicit expression for YE is

obtained by solving simultaneously the equations (6.13), (6.14):




' 2 1
: T
Foekighs Pt [T g—su] ------------ yo 546505)

{ An important characteristic of a VC is presented by its

eigenfrequencies and eigenforms at short-circuited (§1=0) and
w open U%:O) electric terminals (resonances and antiresonances
“ correspondingly). The characteristic equations for obtaining’ the

J eigenfrequencies and eigenforms are obtained from (6.13) as
I

| a) short-circuited electric terminals (§1=O):
det { K + T.57'T7 - M } siepd (6.16:1)
a 2 "E
b) open electric terminals (Q1=O):
det {K+Ts“m‘ —sz} 10| 1z (6:16:2)
VC is infinite (see the second term in the relation (6.15)). At
the antiresonant frequencies the dynamic admittance is equal to

zero, i.e., the minimum electric current flows through a VC. -

Energy dissipation in VC . The phenomena causing energy

dissipation in VC are extremely complex. Energy looses depend
upon a number of factors, such as vibration amplitude and

frequency, temperature, operating point, electrical and magnetic

fields etc. As a rule, account for the above mentioned factors is
taken approximately by introducing corresponding terms into
equations of motion.

Energy looses during a vibration of a VC are assumed to be
caused by mechanic, piezoelectric and dielectric phenomena
[146,100,140]. Each kind of the looses is supposed to be due to a
hysteresis loop in the relations o(e), o(E), D(E). In order to
take account for them, the stiffness cE, piezoelectric e and
dielectric 3° tensors are presented as complex quantities

CE == CE'+ ch“ v e = e’ + Je 7 Bs = SS'+ j:Bs" B (6-17)
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At the resonant eigenfrequencies the dynamic admittance of a.

Consider longitudinal vibrations of a rod-type VC with the

short-circuited electric terminals (E =0). Assuming the harmonic

+“time law for the longitudinal strain s, = siosinwt, the relation
01(51) can be presented as [31]

E’ -4 _E" °
" Sl c1151+w c11 AR (6.18)
i .
because of the relation £ = jws, . Substituting e,= ¢, 5inet into
the relation (6.18), we obtain
=
& : g 212
o, = efesintutr) [14l)F (6.19)

=
where tgﬁ:nu= —%; is called the mechanical dissipation factor and

A 4
¢ dencotes the phase shift between the stress and strain harmonic

vibration laws. The relation (6.19) can be presented as

1
o, = c¥le, + T [s= g 53]2 : . (6.20)

The equation (6.20) presents an elliptical path on the plane
: <$1'aa) approximating the real hysteresis loop. Considering the
relations o = (e;1+ je;i)E Da= (Bfa+ jsfa)E for the same VC

Che g 3
<, -with fixed ends (51=O), a piezoelectric and dielectric
X, =
. . 31 333
dissipation factors Ny Sy and e are introduced.
e
a1 a3

Similarly the physical sense of the remaining complex components
of the stiffness, piezoelectric and dielectric tensors can be
explained.

To measure ‘the' ‘dissipation facectors ‘for all' the ' tensor

" components is a very complicated task. However, usually it isn't

‘“necessary to know all the tensor components when carrying out an

"‘analysis of a specified VC. From the other point of view,

; approximately the same dissipation factor value can be employed

for all the components of a tensor. In the latter case the
relations (6.17) are presented as

€ =cT(14dn,) e =e(l+dn) . 3T = 3T+, . (6.21)
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The dissipation factors can be assumed to be dependent upon
a vibration frequency value as nu(w), np(w), nn(w).

By employing the complex values of cE, e, 5% we assume that
dynamic analysis is carried out in a frequency domain. In order
to carry out the transient analysis it appears preferable to
consider structural equations of motion (6.12) of a VC, and to
employ the explicit expressions of the relations o(e), o(E), D(E)
in the form (6.20) instead of the complex tensors (6.21).
However, in such a case we obtain a nonlinear problem requiring
considerably greater amounts of a computational resdﬁrce.
Naturally, a compromise between accuracy and computational
efficiency is preferable. In order to obtain a linear equation of
motion, we present dissipation as viscous friction force and
electrical voltage drop across a resistance, and at a harmonic
excitation obtain the following equation system in terms of
complex quantities:

~'M U+ K(1+Jn,) U + T(1+Jn ) 8 = F

T' (143000 - S(1+Jn_) 2

Il
O

Taking account for a symmetry of the matrix S , the equation
system can be transformed to the real form

~

~ 1+27’7 _2 ~ — 2
ﬂ»’MmK[u_#]U”K[nﬁﬂ_pm i
1+UD ) 1+nz
~ 140 7 ~i T
1 T —22Q-JT —32Q=F, (6.22)
1y 140
ot ey =
e o i1 A i S, N S T 0l
Ty T+n 147 147

where K =K + T8 *7" , T =705".

At the excitation frequency value a periodic response
of (6.22) coincides with the solution of the system
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Shere R = rIeEREARlONS Gl e e
M

MU+CU-RQ+KU- TQ 2 ¥

4 SRl (6.23)

RU & Bl e S ee B
1+nD

2
S s tas g ]
e Gt S

2
1+77D

1t A
P = wigt n }2 3 w—ii [1 i 1+2npnn_ p ] ,E iy w—x,i{ 1+77P77D
3 1 i ’ = —_———

2 2
fn T+ny
The matrix R in the system (6.23) presents equivalent

resistances connected in sequence with the electric terminals of

a VC, and the vector é — the amplitudes of alternating electrical
currents flowing through a VC.

The difference between the systems (6.22) and (6.23) is that
in (6.22) the dissipation forces don't depend explicitly upon a
vibration frequency. Such a dependence can be introduced only by
employing frequency-dependent dissipation factors nu(w), np(w),
nD(w). At the same time in the system (6.23) the forces are
direct proportional to a frequency value, because the factor w
is obtained as a result of differentiating in time the time laws
U and Q . Moreover, the values of resonant frequencies of the
system (6.22) coincide with the resonant frequencies of the
corresponding conservative system (without dissipation). The
magnitudes of the resonant frequencies of the system (6.23) are

obtained less than of a corresponding conservative system, since

‘they depend upon the dissipation level.

One more possibility of a simplified presentation of
dissipation forces can be obtained by introducing a modal damping
and assuming that damping phenomena are due to only, s ta) the
mechanical viscous friction forces.

The modes of a VC are obtained by solving an eigenvalue
problem for a VC with open electric terminals (6.16.2). We denote
the obtained angular eigenfrequencies through @y j=Tg v

representing the corresponding eigenvectors as columns of the

matrix A=L%Jéz""'én] . A transfer to modal coordinates is
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carried out by substituting U = AZ , the dynamic equation in

modal coordinates being obtained as
Iz+diag(e?) z=a"TQ+4a'F , (6.24)

Assuming that the dissipation forces caused by different
modal vibration components are independent, we introduce a
diagonal matrix of modal damping coefficients diag(pt), and add

the term diag(yt)z to the left-hand side of the equation (6.24).
If the Q-factor QL of a vibrating system at the frequency . value

©, is known, the values of #, can be obtained from the relation

The damping matrix in modal coordinates is diagonal, if it
can be expressed as C=cuM+azK , where a, and o, are the
coefficients obtained at the known values of two Q-factors Q_L and
% of a VC at two different vibration frequency values w  and o

from the relations

w,\wj (ijj -, QL)

2 2
(220, Q,

wLQj_ij'»

g5 ol2= 2 2
(-7)Q, Q,

1

6.2 MECHANICAL CONTACT INTERACTION MODELS
6.2.1 Vibrodrives with point-contact interaction

The simplest model of a VD is presented in Fig.6.1a. If an
elastic vibration is excited in a rod-type VC 1, it begins to
move directively as a rigid body. An average directive tangential
interaction force is obtained as a result of a certain time-law
of the normal interaction force. An oscillating value of the
magnitude of the normal force can be obtained,e.g., by pressing
with tension the VC 1 to the horizontal plane by means of VC 2.

The varying tension force is obtained creating an inverse
piezoeffect in VC 2, i.e., by means of an alternating high
frequency voltage applied to its electric terminals, Fig.6.1b. In

order to obtain the sufficient normal force magnitude,

high-frequency alternating voltage source ensuring voltage

M=
a e

P (1)

ﬁllllllb---ﬂﬂ%

— A
« —HRHIT - - =

Fig.6.1 Construction diagrams of vibrodrives:
a,b,c - links of the simplest model;
d - vibrodrive with the ring VC;
e e,f - traveling wave vibrodrives;
g - finite element of a traveling wave vibrodrive




| \1 of a contact surface. Multiplying the matrices by a nodal dis-

| amplitudes of hundreds of volts are often necessary. Therefore placement vector, normal and tangential displacements of the
resonant vibroimpact motion laws of VC 2 are employed for contact points are obtained. Through do a constant vector
creating a varying normal force, Fig.6.1c. < denoting an initial clearing (QMZO) or a prestressed state
Sometimes the same VC is employed for obtaining a varying {d,;<0). in each j-th contact pair is denoted. The number of rows
of the matrices PN, PT and the length of the vector d° is equal

to the number of contact points of a VD. Each pair of rows of the

| normal force as well as for creating tangential vibration of a
I contact zone, as in the case of a VD with a ring-type VC in

\ M» Fig.6.1d. Its vibration is obtained by a proper division of 5. matrices PN, P; yields a normal and tangential constraint upon
g il electric terminals of the VC into electrically isolated segments. . ' the displacements of the contact points. A tangential constraint
E‘MH The way the electrode segments are connected into an electric is to be considered only if a corresponding normal constraint is
‘ wﬂ circuit ensures the most effective excitation of the. third active, i.e., if it is satisfied as an equality. Moreover, a
i‘m‘ t?n?ential vibration mode of the ring. Places for unidirectional : - tangential constraint is to be considered only if a corresponding
‘W\ fixings are selected at the nodes of the tangential vibration .. = tangential contact interaction force doesn't exceed its critical
i component because a vibrating ring has no nodal points for two . 5 value defined by the Coulomb friction law (friction coefficient
I displacement components simultaneously. The contact elements 5 k}). Otherwise a tangential constraint isn't taken into account

ensuring a point-contact interaction between a VC and a rotor are 4 assuming the tangential force being equal to its critical value.
selected in the vicinity of the antinodes of the tangential ; Formally the above considerations can be presented employing
component. the Lagrange multipliers (see Chap. 3.6). For the analysis of the

The equation of motion of a VD with point-contact - . obtained equations the techniques presented in Chap.3.6 are
interaction with the known potential values on the. electric . - -applied, or these equations are reduced accordingly with the
terminals and without regarding heat effects is presented as’ A techniques of Chap.1.2.
PV +XW + X0 = -Te +F , 6.2.2 Vibrodrives with continuous contact area
PNU < do y (6. 25)

Consider a VD as a two-body system A and B interacting by

1}

PTU & oy continuous parts of their surfaces, Fig.6.2. Assume a rigid body
B being an output link of a VD with one or several motional

where M, K, C, T- structural mass, stiffness, damping and d.o.f. A vibrating elastic body A presents an input link of a VD.

electromechanical matrices of a vC, U, 8, F - nodal displacement, We'll present a problem formulation taking on account only

tential and it i
PO external force vectors correspondingly. small displacements of an input link. If the shape of an output

The equati i i i 3
quation of motion of an output 1link in the system link and its constraints ensure that the contact area doesn't

(6.25) isn't presented explicitly, assuming it being included change in space during a rigid-body motion, (e.g., a cylinder

into the first matrix equation. The contact condition in  each i

contact pair of a VD is defined as follows:

“rotating around its symmetry axis or a rod moving in its

. longitudinal direction), the model in Fig.6.2 can be employed for
a) a contact element can't penetrate through a rigid surface of

an output link,

finite displacements of an output link, too.

Denote a contact surface through S and assume it being
b) if a tangential interaction force doesn't exceed its critical ‘- continuous. If S consists of a finite number of continuous parts,
value, a contact element of a VC and the corresponding point of y
an output link move together without sliding.

The constant matrices PN, PT contain the direction cosines -

the following considerations are valid for each part separately.

The contact interaction is not necessary in all points of S
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Fig.6.2 Surface contact Fig.6.3 Displacements of an :
vibrodrive 3 internal point of a finite

element of a vibrodrive link
moving as a rigid body

Fig.6.4 Time-law of the velocity of an output link in the:
step-motion mode

at an arbitrary time instant. Nevertheless, a contact interaction
is possible at these points as a result of small displacements of
the points of an input link. Assume a function G(X,y) defining an
initial distance between the contact surface points when no
vibration is present. The values of |d(X,y)| are of the same
magnitude order as displacements, i.e., significantly less than
the size of a finite element (FE). The negative values of d(X,¥y)
denote a prestressed condition.

Consider a mechanical contact interaction between the 1links
of;a VD. Electromechanical forces exciting a vibration of an
input link are presented by a nodal force vector -T& , and the

equations of motion of a VD are presented as

\

MU+CU+XKU=-Te2+F+|F]|,

E (6.26)
Jy + c(y) = - Mc— Mk(Fk) ’
where Fk — nodal force vector, J - centroidal moment of inertia
of an output link, C(y) — fluid friction force momentum, Mc -

external force momentum applied to an output 1link, Mk(Fk) -
momentum produced by contact interaction forces.

The third term on the right-hand side of the system (6.26)
signifies that the components of F)< are distributed through its
entire length, according to the numbering of nodes. The second
equation of (6.26) is presented assuming that an output link has
only one motional dlo.f. In the case of"  several .d.o.f.  this
equation is replaced by the system of equations of motion of a
rigid body subjected to contact interaction and other external
forces.

Consider the part S_L of the contact surface corresponding to
the side of the i-th FE. The constraints imposed wupon the

displacements of each surface point of a FE are

n' (s) u(s) = d(s) ,
{ (G.2T)

<T(s) u(s) —Rp =0 ,
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M\ | | .

1 uich

. where u(s)= [g] - displacement vector of the surface point S(X,¥)
\

| ‘ in the directions of the global reference system 0Xy , and the
| unity vectors of the local reference system at the considered
S where N1 is normal to Si . Denoting through

“‘ ‘ point are Il
w E_the form function matrix corresponding to the element side SU

the dynamic equation of the i-th FE with the constraints: is

‘ presented as

MG G0+ R'UT= et B - [N naj as - [ ] < afas

| < Jv+ow =-M +R Y [ [ =5 as ] : (6.28)
\‘ i s,
n'(s) N U* = d(s) , (6.28.3)
B L *7(s) NU" =Ry =77(s) N (s)U, - Ry (s) , (6.28.4)

|
“
\
[ where the index 1 signifies that the matrices and vectors are
[ ; related to the i-th FE, the constraints (third and fourth
I ! relation of (6.28)) are to be satisfied at each point 8§ of the
side S,L . The nodal displacement vector U;(s) defining the
’ | displacement values at an instant when the contacting points
! begin to move together without sliding is in general different
|
|
\

‘ for each surface point § , because the sliding conditions are not

‘ ‘ the same at each point of the element side.

f If instead of requiring to satisfy the constraints at each
“ point of an element side we require only to satisfy the
projections of these constraints to upon the subspace Q§ the
functions Nk , the constraints of (6.28) are presented as

[¥ ae Nas v - [Nas, 6.28.3)
S s,

| 1

|

|

‘ | ¥ as U - B [ Was
| s,

s .
L i

[ N emuisras R Nvas
s . s

| (6.28.4)"

‘ ‘ The values of the normal and tangential forces k; i x; at
i
|
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each point S of the side St are approximated through the nodal
values of these forces by employing the functions Nk as

o i By, T
)\N v Ni. AN » )\'r ¥ Ni. A’r g
< - . Taking on account that the normal interaction force x;(s)

+i can't be negative, and the magnitude of the tangential force

x;(s) can't exceed its critical value]ﬂk;(s) , denote

n(s), for all s , where A (s) > O,
nds) =
0 , otherwise ;
i i i
;(s) P T(s),for all s, where X (s)>0 and [ (s)]|<KA (s) ,
0 , otherwise ;
[ 1(s) for all s, where A’(s)>0 and|r}(s)|<kA\(S) ,
(no sliding) 5
Sy n{s)+k v (s)signn (s) for all S,where X (s)>0 1

| Ai(s)|zk, A (s) ,(sliding) ,

(0 el otherwise °

N

B= [ Moo as ; Bi= [ N (s)N as 5 B- [ Wi (ow,as

Taking on account the above notations, the system (6.28) for

a single FE is presented as
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|
i ’
| Mﬁf+ C‘u‘+ Kiuﬂ=_TL§i+ Fo- P;TA; - P;TA; y g Employing semianalytic FEM procedures [44], models of lower
[ | . g = dimension can be obtained. In this case only a two-dimensional
| : 2 e 4 . 3 : g
[ l | J ¥ + clp)= - Mc + R }d [ J T Ntds AT] 4 area of the radial section of a ring is discretized into FE,
{‘ ? 5, (6.29) Fig-ﬁ-‘g- The displacements [EJ of each FE point of this section
) PiU‘- . N d(s)ds 1 s . s g ! W
‘ Ut = : 5 R in radial, axial and circumferential directions are presented as
s,
L
e ke i ‘ .3
B Byt = P;J N[=" (s)N,Uids - R | Ny ()as E: Fa .
‘ | L s, o8 .
| g where a functional relation of the displacements from the polar

‘ similar to the point-contact interaction case. A ) angle ¢ is expressed as a superposition of some basic functions
‘ Having obtained such equation systems as (6.29) for all "'the 4G(p). Employing harmonic functions, G(p) appears as
FE of the contact surface, a global matrices should be assembled e
following the common procedure of the finite element method. The N Lp) = [IQ'IQCOSP' L 8ine, .., I_cos(h-1)e, I sin(h-1)e ] (6:31)
obtained structural equation system is solved iteratively at each -
numerical integration time point, until the actual contact _ where I - the unity matrix of the dimension 3%8.
interaction and sliding zones are obtained.
‘; The generalized displacement vector [g] at each point of a
p W
A

6.2.3 Travelling wave vibrodrives

| I : FE consists from triplets of cocfficients at each basic function
In continuous contact area VD ring-type VC are wusually = = 3 i
employed. By means of a multi-phase excitation law a high- and is presented as [3] = [ Fﬂ o Fﬂ ,..;, Fﬂ J_ It
| frequency vibration imitating an elastic displacement wave Wi v, W A W
[ travelling along a circumference of a ring can be obtained. As a . is expressed through generalized nodal displacements as
‘ result of an interaction with an output link and with an external T
constraint a rigid-body motion and (or) a motion of an output X [3] = N(r,z) U ,
link is obtained, Fig.6.1f. The division of the electric Wi ¢
; terminals shown in Fig.6.1e,f enables to excite two modal where N(r,7) — a usual form function matrix of a FE.
W vibrations of a ring simultaneously, the axes of two elliptical I=.m:.t;In general, the relation between the displacements at each
| shapes of a standing wave being perpendicular to each .other POint of a FE and its i :
| [116]. If the phase shift between the two vibration components is X : : N A e RO AR sl
1 equal to g , a rotating elliptical shape is obtained, the )
‘ U rotation angular frequency being half of the vibration angular [?] = Ga(p) hal U; = Ga(p) diagN UA . (6.32)
& v

‘ frequency. N
A mathematical model of a travelling wave VD can be .

e commy s e
e On  procedure of the finite element method and
Presented as

can be

‘Th : .
4 presented suploping tbe systes (6,28, considering Bach poin?_ o € structural equations of motion are assembled employing a
} the ring circumference as a contact point. However,

‘ I dimensions of the matrices PN and P,r increase significantif.

|
|
|
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MU, 4, el b Bl B2 9T g
A A A A A A A A A
G (p) diagP U <4,

G, (e) diagP U, =0 ,

(6.33)

P

where dlag P = | . | . G (e) = [T cose, I sine,....
[ €t

2

2m-1

m - the number of rows of the matrix PN ’

Replacing the requirement of satisfying the constraint# in
(6.33) for each value of ¢ by the requirement of satisfying only
the projections of these constraints upon the basic function

subspace Gm(p), the following constraints are obtained:

1A

27 27
| 67c,c1e2, rde U, | ¢ e
o o

b5 : (7.33)"
T

| cre,ateep, rae U,

o

]
@

The expressions of the normal and tangential contact forces
are approximated as

+

MAPdz G An) Ao, o (edimiGide) AL, (6.34)
In order to obtain time laws of a VD motion, numerical
integration techniques for the unilaterally constrained

structures are to be employed (see Chap.3.6). Employing the

dynamic reduction (see Chap. 1.2), the contact forces AN, AT,
ANA, ATA can be expressed as nonlinear functions of the
displacements. The obtained dynamic structural equation with a
nonlinear term can be approached employing the numerical
integration techniques of Chap.3.1, 3.2, 3.3, 4.1 and averaging

techniques of Chap.4.2, 4.3 .
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6.3 RIGID BODY MOTION MODELS OF VIBROCONVERTERS

C o In general, each link of a VD not only performs elastic
vibrations, but also moves as a rigid body. Therefore sometimes
the presentation of a VC dynamics by the matrices M, C and K of a
small displacement model appears as insufficient, because of
disregarding of finite rotations. A full dynamic model is
oﬁtained by deriving the FEM relations in a moving reference
system, Fig.6.3 [40].

Consider a fixed reference system of axes OXY and a moving
reference system OXy connected with an elastic body. A position
of ‘each point of FE in space is determined by the position vector

R = R _+ r_+ia, (6.35)

where R_- position vector of the origin of the moving reference
system , X position vector of a FE point of an undeformed
structure in the moving reference system , u - displacement
vector of this point due to structural deformation.

The directions of the axes of the moving reference system
OXy aren't constant and at each time instant they are determined
by the rotation angle yw. According to the Coriolis theorem, a
full acceleration of a FE point is expressed as

(ol gt Lol SR ; "
=R + u + Oxr_+ OQxu + 20xu + Qx(Qxr ) + Ox(Qxu) (6.36)
dtz o o o

where u - relative acceleration (measured in the moving reference

bsystem ), and O=¢ — angular rotation velocity of the body and of

the moving system.

' The equilibrium equations of a moving elastic body are

: a’x
J £ dtz av = Fext ?
d dr
) = p[Rx——} gV = Moy Ty, (6.37)
dt o dt
a’r .
JgsTadV + JpéuT——;-dV + Jéu fde =009
v v at v

.

where £ - strain, o - stress, £ - volume force, F -

incipal
B principa
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vector of external forces acting upon an elastic body, ‘fy.“—
principal external force momentum with respect to the origin of

the system 0Xy.

The first equation of (6.37) expresses D'Alemberq's
principle for a system of material points, the second - angular
momentum theorem, and the third - virtual work principle for
internal, external and inertia forces acting upon an elastical}y
deformed body. In each equation volume integrals are obtained - by
integrating through the body volume V that is assumed to be
constant because of small displacements and strains. i

The displacements u of an arbitrary point of a FE can be
expressed through the nodal displacements U as u = NU employing a
form function matrix N, the strains « - through the nodal
displacements as €= BU, and the stresses o - through the stfh{ns
as o= c“¢ and substituting into (6.37), we obtain an equation of
motion for a single FE as

M, M 00 fo o o [ e 0D U] (e
e, M || v |+[o o o || v [= W;(%I,I:I:,UZ) +loe |, (6.38)
:: 7:1: M:Q o O 0 K:o U: W: (V’ U: U:) F:xl

where M:r=[g 8], m=deV — mass of FE;
v

M [9_23] (r+nU®), r=Jp[;°]dV= mX £=Jdev ,  X°-  veetor
o . .
v v

containing the nodal point coordinates of a FE, where E%]=NX';

o

M =m

re

&L e S T i3 (g 38 e g
My = 9+ 20T UTHLD T = [ N [;o]dV—M’X",

J = J P(X2+yi)dV = X’TM:.X° - moment of inertia of a FE with
v
respect to the origin of the moving reference system oXy,;

s L7 i NI o T S 9 F - P e [ a7 [O-1 | arreTag
M, =T M U° r‘JPN [1 O]E ]dV- M X, M =|eN [1 O]NdV— gy
v v

L
o
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_M{,:JpNTNdV=M:: - mass matrix of a FE;
v

YR = B'c"BdV - stiffness matrix of a FE;
L3

v
03,02 = 2[Tg]aty + nexut v
W (v, U2, 000 = 2(K+00 )M U
o 4 o o feniagy s
W, USLUD) = 2[1 O]mUw + M

F® - vector of external forces acting upon a FE;
X

EF' — principal vector of FE nodal forces;

oxt

‘EM:“— principal momentum of FE nodal forces with respect to the

¢
origin of the moving reference system.

A model presented by the matrix equation (6.38) possesses
excessive d.o.f. because K and M are the matrices of an
unconstrained structure. In order to eliminate the excessive
d.o.f., a set of constraints can be introduced. An alternative
approach for eliminating these d.o.f. is obtained considering the
-elastic displacements in modal coordinates. Representing the
eigenfrequency vector as (w:, w:, w:) and an eigenform matrix as
[Ao, A, ;
eigenfrequencies “Z and the corresponding rigid body eigenforms

AT we delete from consideration the zZero
2

A_ . Truncating the dynamic contributions of higher modes, we

obtain the equation
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stationary motion mode is obtained by applying a

s s e
A A : A
i B S | < fomi s § 'q. périodic excitation law (pulse series or harmonic) to an input
M:W o AiMWO AZMWO Fann N 0 0 £ “iink the excitation frequency being in the vicinity of a |,
- % o r {
M ™ g 0 é 0 0 diag(wz ) 0 2 — echanical resonance of an input link in order to obtain greater
1 re 1 Ye i 11 4 mecC A0l |
: L L o g 2 ibration amplitudes.
A A vi : .
Moo 22l 2 g o g § i L The step motion mode is obtained by applying to an input
link separate pulses, pulse packages oOr several periods of a
L (; ﬁ U,) i3 e harmonic excitation law. In the latter case a transient vibration
’ .! o o . .
i 5 3 of VD links is of primary importance. It can have have a positive
4 WW(W'U.'U.) g EM,n (6.39? s well as a negative influence upon the operational
ATW® (v, U_,U )| |aTF =3 i
e Tt 17 ext ; characteristics of a VD.
ATW.(Q ﬁ ) ATF The quantities evaluating operation parameters of a VD can
ARG iy i i £ motion the
N be presented by averaged characteristics o by
i i s theless
The obtained equation presents a full mathematical model -of construction features, maintenance features, etc Ne:er e ; ,
, iti i h ase O a
an elastic moving link of a VD. In many cases there is no need to .. here we present quantities evaluating the VD on the 5 ’ .
take account for all the terms appearing in the equation. A L mathematical model. They are obtained by means of a structura

dynamic equation analysis of a VD.

) S T B i W,: Fyr W° g W T The dynamic characteristics of a stationary motion mode are

factors is possible due to a negligible magnitude of the angular

~;)btaihed considering the stationary motion law of a model. The
velocity. The terms connecting the elastic and rigid body

. s formulas a2re presented for the point-contact interaction case and

displacement values can often ?e omitted, too. In such a case the B v itn 2 single djo E. o #n cutpubs Linky HIE e output

mass matrix blocks take the form M_ =0, M =0, MWW:J' M°w=[o_é]r. link has more than one d.o.f., similar characteristics should be
re Ye r

The equation of motion of each VD 1link being (6.38) or

(6.39), the mechanical contact between the links is described by

employing unilateral or bilateral constraints

2 obtained for each displacement component of the output 1link. 1In
the case of a continuous contact area of a VD, in the following
formulas the surface integrals should be employed.

There are following dynamic characteristics ofsd VDl sin tthe
stationary motion mode.

P (»)U, < d(w,U, ,

[ 1. Mean velocity of an output link
P (U, 0

T.
det.
o

where v — displacement of an output link, T - dinput 1link

Il

The time laws of a VD motion are obtained by applying to the

. ok
# <
above equations the techniques of Chap.1-4. :

R

6.4 DYNAMIC CHARACTERISTICS OF VIBRODRIVES 3
vibration period.
In order evaluate quantitatively the operation of VD, the i
dynamic characteristics are employed. The analysis of VD is
carried out in two operation modes - a stationary motion and a
step motion mode.
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2. Output velocity variation.

Mean and root-mean-square
(rms) ratios can be employed:

v 2
bt Ty
c ¥

(-3

€
H =
or——

The time interval for measuring a deviation Ay can be
equal to one vibration period. However,
employ such a short time

taken
it isn't much sense to

interval because usually Ay is ..an

th v , and, ‘as a
- As a rule, the time interval significantly
exceeding the vibration period T is employed, and the obtained

infinitesimal of higher order in comparison wi
result, sy ~

deviation Av; can be caused, €.g., by the irregularity of
geometric parameters of a vD.

3. Mean torque in the case
rotational d.o.f. -

of an output 1link with a

RT
Meni Z;‘an it ;

mean force in the case of a linearly moving output link

1'1'
Fc= Z—J-x“dt,
\'.To

where XTi— tangential contact force at the i-th

contact
interaction point.

4. Mean normal interaction force between an input and output
link (a prestressing force in a contact zone).

1 T Loty oes el
ch Z._J—)\”‘Ldt’
L it o ‘

sl XNA contact

.~ normal contact interaction force at the i-th
point.
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e
5 unl: of work dur ing one vibration per iod. In the S
. AmO Cca

t link with a rotational d.odf.
t

ou put

Of an

T
A= [w oy .
o

i i i lace of
In the case of a linearly moving output 1link in p
n
(] 4 -
M -~ and y
. €
substituted.

the values of I and of a linear VelOC]-tY should be
. u
e

L=

ntial interaction forces
- .6. Amount of work A done by tange

‘during one vibration period.

1

'>7. Efficiency

A

n

Ah+AT+A°L+A

therm

— thermal losses.
where A — electrical losses and Alh.rm - S ey .
TF.La mathematical model of a VD is 1inv . &
' i cnsidercin: nt
hanical efficiency value obﬁalned by considering
mec

mechanical work is often employed:

A

n

An ~1—A_r

4 Al ¢ 34
the step motion mode the following characteristics a
In e

-employed (Fig.7.4):

i P r
where Y maximum dlSplaCeme“t of an out ut link T motion

5 i i irst stop;
i output link in forward direction until the firs
time o an

i i direction;
. - maximum velocity of an output link in forward i

max

% -~ maximum velocity of an output link
3

caused by transient motions of VD links.

in backward direction

i lipa




7. ANALYSIS AND SYNTHESIS OF VIBRODRIVES

duction approach . It is based upon the truncation of the
re

i dynamic contributions of higher ' ‘modes (. of - the  linear .part,
” In this chapter the dynamic analysis of vibrodrives (VD) is ¥

B imultane
carried out employing the techniques presented in Chap.1-4 and the zpproximatelY evaluated dissipation forces (see Chap.1);
I [ mathematical models presented in Chap.7.

| — analysis of longitudinal resonant impact-vibrations of a
W The free and forced impact vibration of a rod-type

I vibroconverter (VC) is investigated employing the finite element
‘ model and phenomenological contact interaction models. The

\ g
W complex friction laws are presented as a superposition of the

ously retaining their quasistatic contributions and the

vC ‘ employing time-averaging techniques has shown. that the
sblution considering two Fourier components time-averaged
é&éétionéhpresent satisfactory results only in the case of a
'éﬁé—mass elastic system. For obtaining reliable results when

il Coulomb, linear and cubic components. Employing the tlme— considering structural models, at least four Fourier components

averaging and numerical integration techniques a step motion of

are to be taken on account;
vibration-controlled kinematic pairs (VCKP), free and forced

_ it has been shown that the motion of VCKP links can be
| motion of VD are investigated employing the lumped-mass as wel}

controlled employing tangential vibrations in the contact zone.
(I as finite element mathematical models. An analysis of a VD with

fhe values of the normal contact interaction forces are obtained
o an internal impact interaction pair employing purely longitudinal
‘ vibration of a VC is carried out. VC shape synthesis problems are
‘ Alved ‘enplaying the optingl dedig o fular : vibration and the velocity-frequency characteristics of the
\

The techniques presented in Chap.5 enabled to obtain the Vst t link in the stationary motion mode have been obtained, the
‘ |
I

“ optimal control laws and feedback circuit parameters in order to

ensuring the equal slopes of an output link velocity pulse. The
amplitude-frequency characteristics (AFCH) of the input 1link

‘duration of transient vibration being dependent upon a Q-factor
damp transient vibrations occurring due to the externally exc1ted

| ‘value of a VC and upon the mass of an output link;
Wi “EePWIS“ increments of longitudinal elastic deformation.

R -~ a dynamic behavior of the finite element model of the VCKP
The following original results are presented in this chapter:

with the magnetostrictive input link and two friction contact
— the impact interaction of a discrete mechanical system

points has been investigated. Such an VCKP isn't sensitive to the

‘ wi L S MR i e R e e elastiQ, ‘modulation depth of the normal force and to the curve shape of a

irrespectively of the restitution coefficient values in the
vicinity of the contact point. It is reasonable to employ the
d‘ rheological model of the dynamic contact interaction, if the
stiffness coefficient of the model exceeds the static stiffngss

i of the structure at the contact point less than to one order (10
| M times). Otherwise the impact vibration law doesn't depend upon

" friction law;
- investigating the system of two elastically connected

masses impacting upon each other under harmonic excitation law
and moving upon a rough surface, the directive motion of a system
as of a whole has been obtained. The direction of motion can be
‘Tfeversed by an appropriate adjustment of the Coulomb friction

coeff1c1ent value;

\ N‘ the local contact ‘condition, “‘and Vit appears preferable_yto
w 4 " _ employing two-dimensional vibration paths of the contact

represent the problem employing unilateral constraints rather

ShSby- s Al . gumvaled, nenlinepr Fapiaiys oatuct i " points of a VD at stepwise and stationary motion modes the

e umericshetanlraaiiu el e iegle of A generalizéd amplitude-frequency, velocity-frequency, motional force-output

1 w Newmark's numerical integration scheme in order to take account hVelocity, mechanical efficiency relations and the feasibility
! ‘ for unilateral constraints retain the asymptotic features of the
i “ W original one. Analysis of free impact vibrations carried out on
\ B the reduced dynamic models compared with the results obtained

employing the full model justify the validity of the dynamic

area of stationary motion laws have been obtained;
. - asymmetric vibration cycles in  the :ring-type VC. are
excited by means of adjusting the geometric parameters of a

;bimbrfic ring in order to obtain multiple eigenfrequencies. The

|
|
,




locations of asymmetrically vibrating points on the circumference
of a ring are preconditioned by an excitation level of the
corresponding modal vibration.

- asymmetric vibration cycles in rod-type VC are obtained by
means of an optimal shape synthesis techniques in order to
satisfy necessary eigenfrequency and eigenform relations. The
shape forms for asymmetric vibration cycle concentrators and
vibration cycle transformers have been obtained.

- a VC producing asymmetric vibration under harmonic
excitation have been obtained by means of supplying the VC with
an internal impact interaction pair;

- the programmed and closed-loop control laws have been
obtained ensuring the damping of transient vibrations occurring
due to the externally excited stepwise increments of a
longitudinal elastic deformation of a VC ;

- investigating the models of VCKP controlled by a varying
normal force, the complex friction laws ensuring the equal slopes
of an output link velocity pulse have been obtained. In the case
of a high normal force modulation frequency value a stationary

motion mode has been obtained, the control of the velocity and

acceleration values being poésible by means of the

width-modulated pulses of the normal force.

7.1 FREE AND FORCED VIBRATION OF SYSTEMS WITH NORMAL
INTERACTION

The free impact vibration of a cantilever beam VC. Here we

consider finite element models of several discretization levels,
Fig.7.1. If the number of elements NEL=1 , the model presents a
mass attached to a spring. By increasing the number of elements
the number of d.o.f. increases and a structure approximating the
dynamics of the VC with distributed parameters is obtained.
In an undeformed state, the constraint coincides with the
right-hand end of the VC. At the initial state the VC is
compressed by the force Fn, and released at the time instant t=0.
The time laws of the displacements of the model during the free
impact vibration depend upon the discretization level as well as
upon local contact conditions. The computed results are presented

in terms of the following dimensionless quantities: displacement
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Fig.7.1 Finite element models of vibroconverters
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I ”‘i”\‘:
l
i ‘M“H of the right-hand end U“=P—"- s time .= %— , impetus of normal e
\ | | Fe B4
‘ \ \h”} contact interaction forces S = m , where Uo — dnitial ) On /\ _AS.,B
‘ i B 030 -8.240 e
il H‘M displacement of the right-hand end owing to the initial il R ::E:g
‘ | | compression of the VC by the force F , T - period of the first > o3
\ ‘ MHN‘ vibration mode of an unconstrain:ad VOC, kK, - longitudinal b jg?g
‘ ‘MM stiffness of the VC. The rheological_model of the contact pair is e =, :T.,i“ . , : { : / ; : : 5
| ‘}‘ presented by a spring of stiffness K = lg— and a viscous damping R G0 83 3'5 i,
\ | L :
“ ‘ mi element C = R:%— connected in parallel. Un S
| o J | 0.2+ l-6.10
‘ ! M“‘ ‘} Fig.7.2 presents the time laws of the displacements Un and e Sl \ 1-8.15
‘ J UHHN‘ the impetus accumulation law of the normal contact forces S for it 0.5 7 e ik 7Y :-::zg
i ‘ the values of the coefficient of restitution Rf=0 and R‘_=1 at -8.84 \\A// l--:g-:g
‘ |l U\HHH several values of NEL. At NEL=1 and NEL=2 the finite element R s ; i
‘ “1:“: model of the VC presents one- and two-mass elastic structures
\ ’ ‘W”: correspondingly. The internal damping is assumed to .be very ' 0.
fhi small. We investigate the influence of the coefficient of 5 -0.24
; “E restituﬁion Rr upon the dynamic behavior of the structure. -.0.4__
| I \‘\ At Rr=O the energy dissipation level is high, and the S 3.6l
‘ ‘ \14‘ accumulated impetus of the contact forces is significantly lower _o.8l
| I than at Rf=1 . Obviously, the energy of the structure isn't s ) :
“ conserved because of the perfectly plastic local impact condition i 9.0 9.1 0.2
I 1‘;; of the point mass at the right-end of the model. The larger
‘ ' !H‘ amounts of mass of the structure is concentrated at the contact . 3 _S;_ - :.—;gé'
| ‘ N point, the more energy is lost at each impact interaction, and & Ll \ ;Eg;?g
[ ‘ '! the greater is the rate of the mechanical energy decrease (if 6l o sJ. e
’ \ ’ NEL=1 , the energy equals to zero after the very first impact). ]
I By increasing the number of elements, i.e., by approaching the
| 1 ‘ | distributed parameter model of the VC,. the motion law becomes _l'ﬂﬂ.e BT G2 85 GO S Bt A gl et
| ‘ less and less dependent upon the coefficient of restitution Rr' - : . Vo d ;
‘- ‘ } ‘ . 1f R>0 , each impact presents a series of microimpacts 3 Flg 7.2 Time laws of the displacements and of the contact force
' Il (quasi-plastic impact,[122]). It follows that in general the impetus oflthe ilggt-higgtigg)of the model (absolutely
‘ }’ impact of an elastic structure is always elastic, independently r191d+l?cg C:tr-_l 300 o O =S At Rr=0;
i ‘ of the value of the restitution coefficient in A the vicinity' of .‘f. i x - ﬁ: at Rf=1' i s g rat AR =il
(il ]\ the contact area. a)NEL=1; b)NEL=2; Cc)NEL=5; d)NEL=10
I l‘ The free impact vibration has been investigated, employing e ;
| ‘ ‘ ‘ the rheological contact interaction models, Fig.7.1b. Fig.7.3 ] Ee
I
‘ | 176 : ' gy
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Fig.7.3 Time laws of the displacements and of the contact force

impetus of the righ
condition presented

+-0 , o -58
_h
i}

t-hand end of the model (local contact
by a rheological model, NEL=5)

at k=67 ;

> T Sutat EBLb.T 5 ’
o - ﬁn b S Jati k=067
paks s
08 I 016
S e
0,08
04 ; X )
TS 0
0 01 1 10 k

Fig.7.4 Free impact vibration characteristics related to tl:xve
stiffness coefficient of the contact rheology, NEL=10:
T - free impact vibration period; 'I‘a - contact time

during one vibration period; S - contact force impetus:
during one vibration period
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Fig.7.5 Time laws obtained employing different inteération step
size, NEL=10, post-impact restitution ratio R£=0, number

of integration steps: a) 800; b) 30

Eig.7.6 'Z!L‘ime laws of the displacements and of the contact force
impetus of the right-hand end of the model. Absolutely
rigid local contact condition, number of elements NEL=10:

+ - ﬁh DY =A S —lifullinodely) R =0 ;
iy ﬁn , v — S - reduced model, single dynamic d.o.f;
o - ﬁh , £ - S - reduced model, two dynamic d.o.f
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presents the time 1laws of the displacements and of the

accumulated normal interaction force impetus at several values of

the rheology stiffness coefficient K . The comparison of the
obtained results with those presented in Fig.7.2 implies that by
increasing the rheology stiffness the motion laws are approaching

those obtained in the case of rigid constraints.

In the case of the lower magnitudes of K an essential
difference between the motion laws is obvious. The quantitative
evaluation of the free impact vibration behavior with respect . to
the rheology stiffness coefficient is presented in Fig.7.4 by

means of the relationships between the free impact vibration
period T, interaction time during the period Ts, accumuIéfed

normal interaction force impetus S and rheology stiffness K . It
should be noted, that the rheology features are of great

significance in the impact vibration, if 0.1<K<10 . At the values

k>10 it is reasonable to employ the rigid constraint and a
Lagrange multiplier approach for the numerical integration of the

equations of motion (see Chap.3.3). In the latter case it isn't

necessary to know the exact value of the rheology stiffness-

coefficient, because it has no influence upon the lower harmonic

components of the resulting free motion law. On the contrary, if

k<0.1 , the impact vibration law is very similar as in the case
of the unconstrained structure.

Employing the rheological models with the stiffness and
viscous damping elements connected in parallel, theoretically ‘it
is possible to adjust their values in order to obtain the local
contact condition corresponding to any value of the restitution
coefficient in the range 0< Fg <1 . Nevertheless, in order to
represent the value R_E 0 , the dissipation coefficient is to be
increased up to a very large value. It results in poor
convergence when solving the nonlinear algebraic dynahic
equilibrium equation at each time integration step. On the: éther
hand, for each particular case of analysis it necessary to aajust
the contact stiffness and damping coefficients individually,
because from the very nature they are employed in order to obtain
the motion laws adequate to those taking place in a real system

rather than for representing some physical quantities. Therefore,

180

if it is possible to neglect the local elasticity of the contact
area, it should be done. In this case the problem is to be
represented the dynamic contact problem by the linear structural
equation of motion with wunilateral constraints rather by
including directly the nonlinear terms representing the contact
forces, as it enables to deal with the coefficients of

restitution simply perceptible for most engineers instead of

. employing sophisticated rheology coefficients.
Tt Let's evaluate the asymptotic features of the generalized

- Newmark's scheme applied to the structural equations of motion

with unilateral constraints. It appears reasonable to expect,

that the numerical damping, period elongation and numerical

. stability features would remain similar as obtained in purely

linear structure analysis.
Really, the motion law obtained by integrating a constrained
structure is composed from the motion laws produced by an

unconstrained one with boundary conditions varying at the time

- instants where some constraints change their status  becoming

..'active or inactive. This suggestion is confirmed by the motion
‘law analysis presented in Fig.7.2a,b , for which the exact
<solutions can be easily obtained. On the Fig.7.2a there is no
-amplitude decay, and the period elongation comprises = 1% at 50
‘time integration steps during the time interval [O,To]. In order
to illustrate the unconditional numerical stability of the

algorithm, the free impact vibration law was obtained for a

two-element structure (NEL=2) during the time interval t=0-5 at

#ﬂ%:O with the small step (800 integration points) and with a very

large time step (30 integration points), Fig.7.5a,b. No errors

7 ‘are accumulated in the second case, and the contact force impetus

is obtained close to its exact value.

Free impact vibration analysis employing reduced model with

the truncated dynamic contributions of higher modes. In Fig.7.2

displacement time laws of the right-hand end and of the
corresponding force impetus are presented, obtained by
integrating the dynamic equations of the 10 element model at the

< impact restitution coefficient values I§=O and Rﬁﬂ. As was

~‘mentioned above, the value of the coefficient of restitution

hasn't a great influence upon the vibro-impact motion law of an

.«elastic structure.
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Fig.7.6 presents the motion laws,

reduced models,

first mode only and of the first and second modes.
reduced model with two

noticed, that the approximation by the

dynamic d.o.f. presents the impact vibration

obtained employing the
taking on account the dynamic contribution of the

It should be

behavior with the

sufficient accuracy for practical purposes. The time laws in ‘

Fig.7.7 enable to analyze the influence of the dissipative
contributions of the higher modes, assuming zero values during 5
the integration step for the second and third generalized P
displacement time derivatives (relations (1.30) and (1.31) for

obtaining the normal contact force). The discontinuous changes of

the displacements correspond to the inertialess motion of the <

higher modal components,e.g.,discontinuities at the time instant

of removing the prestressing force (t=0), and at the time instant
of impact (t=0.24). Fig.7.7d presents the time laws of the impact

vibration during the time interval t<[0,5]. The comparison
between the amplitude fade rates implies, that the dissipation in-
the reduced models is higher than in the full ones.

Forced impact vibration of a VC prestressed against a rigid

constraint by longitudinal force . A rod-type VC presented in

Fig.7.1c is employed in VD for creating a varying normal
interaction force. A VC unsupported rigidly in a frame is
preferable in comparison with a cantilever one, because in the
latter case great amounts of vibration energy are transferred
through the rigid support to the frame. A VC of the length 1 is

presented by a finite element model, the prestressing force being

Po, and a longitudinal harmonic excitation force is
Pi(t):PiSinwt. The computed results are presented employing the
1 . 1
& A s 2oy &y Loy p
dimensionless quantities t = E(E/p)z, o U=l LB S T =g
T 1 El

1

P=—, o =wl(p/E)?, where E, p are the Young's modulusA.aﬂd*

contact
4

density of material. The dimensionless impetus of normal

interaction forces is obtained from the relation S = — (p/E)z.

A vibration Q-factor of the VC is assumed to be Q=50.
of the right-hand

displacements of the VC obtained by means of the direct numerical
b % Ui

Fig.7.8, 7.9 present the time laws end
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Fig.7.7 Time laws of the displacements and of the contact force
impetus of the right-hand end of the model (local contact
i, rheological model, NEL=5, k=0.33, c=0.8 :

D 05 o= 8 oL
Y

x-Uh,X—S =

O"“ﬁ‘lw—g T

a) reduced model,
dynamic d.o.f; c)

full model;
o <3
reduced model, time derivatives z = z =..

A obtained by the relation (1'43)J,
reduced model, time derivatives

A obtained by the relation (1.44);
single dynamic d.o.f; b) reduced model, two
reduced model, three dynamic d.o.f; d) reduced

.=0

(4)
Zh=2 =% =0

model, two dynamic d.o.f, time interval t<[0,5]
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Fig.7.8 T£ansient impact vibration of a rod-type VC, NEL=1,

P =P =1, ©=1,02 (excitation

vibration afterwards):
a) direct integration of equations of motion, time
contact point displacements and normal
2400 integration points)

during 90 periods,

laws
contact force impetus,

b) numerical integration of time-averaged equations
taking into account two Fourier components, p=2,

phases,

1
+ -0 , x=v'= [(U:)2+ (U:)z]2 . 6 -
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Fig.7.9 Transient impact vibration of the rod-type YC, NEL=10,
P =P=1, ©=1.02(90 excitation periods, free vibration afterwards):
o 1

a) direct integration of equations of motion, time laws 'of the
contact point displacements and normal contact force impetus,
2400 integration points) / )

b) numerical integration of time-averaged equations 'of mot}on
taking on account two Fourier components, pr, 75 %ntegratlon
points, time laws of the contact ?oint vibration amplitudes and

Bbases, e U smacisiilly sl d Qipia s
c)three Fogrier comp9nents, p=351 15 integ{ation g?ints,
i A S Y i 0 Ui BT
d) four Fourier components, p=4, 75 integration points,
et T L O~ i (o O]

’
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integration of the equations of motion, and the time laws of
Fourier component amplitudes obtained by means of the numerical

integration of time-averaged equations. The excitation frequency

is assumed to be resonant, i.e., w = 1.02, the number of elements
being equal to 1
10 (Fig.T.9).

(two-mass structure, Fig.7.8) and equal to
In the case of the two-mass structure the
time-averaging approach enables to obtain satisfactory results
taking on account only two Fourier components (p=2). However, it
is not the case for the structure with 11 d.o.f. (NEL=10) for .a
satisfactory representation of a motion law at least four Fourier
components are to be taken on account (p=4), Fig.7.94 .

The transient motion time laws in terms of slow varying
amplitudes have been obtained by

employing time-averaging

techniques are presented in Fig.7.10. In Fig.7.11 the AFCH and

PFCH are presented at several prestressing force Po values. As a’

distinctive feature appears a resonant frequency shift to the

right in comparison with the resonant frequency of an
unconstrained VC and the different steepness of slopes of the
AFCH. The curves 1 and 4 exhibit the difference obtained in the
case of one-element and ten-element structures.

Analysis of vibration-ccntrolled kinematic pair with normal

vibration in the contact zone. Such a VCKP consists of two links:
a VC as an input 1link and a rigid body as an output 1link
prestressed to each other. A constant moving force applied to the

output link doesn't exceed the Coulomb friction force and the
links of a VCKP don't move with respect to each other. The
relative motion begins only when an elastic vibration of an input
link 1is excited. In various constructions of VCKP normal,
tangential or the both kinds of vibrations can be employed [92].
In Fig 7.12 a VCKP with a cylindrical VC and a rotating
output link is presented. In the VC.vibrations of the first mode
are excited, where the vibration normal to the contact surface
prevail. The rotational rigid body motion of the VC is prevented
by the vibro-isolating fixing at the upper circumference of ‘the
cylinder. If the stiffness of the fixing is considerably lower
than the stiffness of the VC, the influence of the fixing upon
the resonant frequency value and upon the vibration amplitude of
the VC is insignificant. Therefore the problem can be presented

as axisymmetric one employing the equations of motion
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Fig.7.10

[ER £ 2

030:;
02,03f

Transient impact vibration of the rod-type VC_at §ev$ral
values of the excitation frequency , NEL=10, P°= P£= i

i i i ime— d equations of
umerical integration of time-average 7
égtion taking on account four Fourler components, ‘p-4,

75 integration points, time laws of the contact poxnt

vibration amplitudes
2 % L ol = Ua P
+ - U s G § e b 3
3 - -
a) ©=0,99; b) ©=1,01 ; c) ©=1,03 ; d) «=1,05
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Fig.7.11 AFCH and PFCH of the rod-type VC contact point, P1=1:

1 - unconstrained vibration;
2= §°= 1, p=2, k=10, NEL=10;

3 - §°= 1,5 , p=2, k=10, NEL=10;
4 -P =1, p=2, k=10, NEL=1;
-5 . o] 41
— - amplitude U'; — — — - amplitude U, - — phase ¢.
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f{ I ‘ o) e
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L ,
74,
1 % >
Mg

Fig.7.12 Finite element model of the vibration controlled
kinematic pair: )
1- Finite element model of an axisymmetric VC,
2- output link, 3- vibro-isolating fixing,
M - constant external torque, F- normal force
9
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MU + CU + KU = =P"» + R(t) + F ,
Bl O ;
) . - . (T.1)
Jw=-kf[ xi]signwwtmg,
is4
g S N TG
h ={ & i
k 0 , otherwise .

where M,C,K - the structural matrices of the vC, R(t)=R(1+T) -

periodic excitation force caused by an inverse piezoeffect in the
vC, F — constant prestressing force, X - Lagrange multiplier
vector accounting for the constraint PU<0O. The physical sense of
the vector A elements are the normal contact interaction forces

able to acquire only nonnegative values. J is a principal

‘momentum of inertia of the output link, K - Coulomb friction

3
coefficient, ¥ - rotation angle of the output link, M - constant

external torque. The matrix P , defining the constraint system is

0=t 020 0 080l By snsssl 02500 i
(D 5 I ey R 0 R I R e i ¢
kan= B O el S bl (0 i (it 6 TR SR 0 A ® ; 0 :
1 95 @ S 0 1 0 Wil 0 (s 6 T e T B E ;
where the numbers of nodes Premrs i correspond to the lower

surface of the VC, see Fig.7.12.
The elastic vibration modes of the VC are obtained by solving
an eigenvalue problem

(K - ™M) 6 =0 ,

yielding angular eigenfrequencies W, i=T,n and eigenvectors
presented as columns in the matrix A=[é°,él,..., 6n]. The eigen-
frequency value w°=O, and 50 is an eigenvector corresponding to
the axial motion of the VC as a rigid body. In order to present
the problem in modal coordinates, the substitution

Ui'=lA iz

is employed.
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We present the vector of the squares of eigenfrequencies as
©y
2| @nd the matrix of eigenvectors as A = A SR

o9 B , where
u2

the submatrix A, and the subvector w
modes. Assume A= [60,61],

2 correspond to the truncated
4=1el. . ¥, Sszzdiag(1/w:) AL,
A= P SkPT. Neglecting the dynamic contributions of the modes
mz,éz,...,wh,én and taking account for their
quasistatic compliances, we obtain the set of reduced
of motion

remaining

equations’

E; 5:PTA“*stozo +<S:PTA"P<S‘21= él(I—PTA"‘PSk)(R(t)JrF), (7.2:1)
§1+ 2co1c1é1 + Wiz o+ é:PTA“Péozo iy 6IPTA"P<5121 =
= 8, (I-PTA'PS ) (R(t)+F), (7.2.2)..

k

o PRy

(7.2.3)

9 i=1

where » = A™(P6_z_+Ps z +PS (R(1)+F))

The equations (7.2.1) and (7.2.2) present a

dynamic behavior of the VC as of the mechanical

nonlinear

system with two
(7.3.3) presenting
the dynamics of a rotational motion of the output link. Making the
corresponding notations

d.o.f. They are independent from the equation

and assuming the harmonic external

excitation law, the equations (7+2.1)2and . (7.2.2) appear as

zo i koc'zo i kxozzz I\c e

(T28)°
e i 2 g
Z, + 2wz + w2, +k.z +Xk, 2 =D sinet + I,
where koo,kio,kil are assumed to be zero at the time instants
when the values of A are negative. Fig.7.13a,b present the AFCH
of the generalized displacement Z, and of the relative contact

time during a vibration period obtained by

employing timg—
averaging techniques at the

values of the dimensionless

coefficients k5°=—k10=k11

=2 . 2“10120’02 » = 0 and at several
values of fo

- The dimensionless quantities are obtained from the
relations
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Fig.7.17 Time laws of establishing of the stationary value of the =
output link velocity
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Fig.7.19 E%astic vibrating system interacting with a rigid output
link; 1 - input link , 2 - output link
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ity - - 2wct — 2uwC
yk=—,t=1te , L= s 2ect =-—=, the contact
w: pw i 7K

condition being defined by a positive value of the total normal

6y =

qe

1

interaction force [ kr

The rotational motion dynamics is investigated employing the
equation (7.2.3) at an already obtained time law of I xi s A
considerable reduction of the friction force caused by the
vibration exibit the low magnitudes of € , determining the short

braking time during a vibration period.

7.2 FORCED MOTION OF SYSTEMS WITH NORMAL AND
TANGENTIAL INTERACTION

7.2.1 Kinematic pair motion control by the tangential

vibration

Interaction of a vibrating link with a massive moving body

The simplest mechanical system presenting such an interaction is
presented in Fig.7.14. Assume the time law of a vibrating body
being harmonic x2=a coSwt . The massive body 1 moves recti-
linearly under a constant external force F and friction forces in
the interface between the bodies 1 and 2. Assuming the Coulomb
tangential interaction force, the equation of motion is

m, X, = Nf sign (xz~x1) 0 sl (redy

where m, — mass of the body 1,N - normal force, f - Coulomb
friction coefficient, x;:a coSwt — motion law of the body 2, Xi—
displacement of the body 1.

We present the equation (7.4) in a dimensionless form

i1= Nf sign (cost - ii) +F , ¢7.5)
where the dimensionless quantities are obtained from the
relations
i e S ~ iy 5 N
o X, =aw, F= — N= S
& miw a miw a

We'll investigate the motion laws at high vibration

frequencies » , i.e., when the values of the dimensionless forces
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are considerably less than unity. Presenting the equation (7.5)

as

"

X,= <Nf sign (cost - X,) + <F , (7.6)

where £ - an infinitesimal quantity, we apply the averaging

techniques. At the first approximation we search the solution as
)_(1= A, (T=T1)

where A is a function slow varying in time. Averaging the
right-hand side of the equation (7.6) during the time interval

[0,2r], we obtain

A=-ZNfarcsin A+F . (7.8) v
In order to determine the mean velocity ii of an output 1ink
in the continuous motion mode, we assume A=0. The relation

between the normal force N, tangential force I and the mean

velocity is obtained as

7

— =-Z2arcsin A, (7.9)

NI
where -1 < A< 1, (see also Fig.7.15). The relation (7.9)
corresponds to the result obtained in [55]. From (7.9) we

determine the amplitude value of the vibration with the frequency
w in order to ensure a stationary motion of the output link with
the mean velocity A . At the same value of the normal = and
tangential force ratio, the mean velocity depends upon the
vibration velocity amplitude &w . A stationary motion with< the

velocity greater than 8w isn't possible, therefore a tangential
force |F|>|Nf| shouldn't be applied. Moreover, at such;. a

magnitude of F the output link can't remain in a state of - rest
even when no vibration of an input link is excited.

An important dynamic characteristic of VCKP is the time
interval from the beginning of vibration necessary to establish a
stationary velocity value of an output link, and the braking time
interval from the instant when vibration is cancelled. :Of

interest is the case, where the front and back slopes of the

194

the relation (7.12) for obtaining o

velocity pulse are of equal duration, and this duration is as
short as possible, Fig.7.16. In order to determine the duration
of the front slope we employ the time-averaged equation for a

transient motion as

},:I_“—%I:TfercsinA,if B e R~ B
T T s (7.10)
e T SE. . kel .

Integrating the equation (7.10) numerically at a number of

values of F/Nf, the time laws presented in Fig.7.17 are obtained,

the front slope having a form of an exponent function. In  order

. to determine the duration of the back slope the equation (7.5) is

_considered with no vibration of the output link:

"

X,= Nfsign X, +F . (7.11)

The velocity of the output link decreases linearly, and the

braking time from stationary velocity value Vi is obtained as

v
Pt LamiO - Chs e )

b - -
NE-H

Employing the relationships in Fig.7.17 for obtaining Tf and

o in Fig.7.18 the

. relationships representing the durations of the front and back

!élopes are presented. The durations are equal, if F/ﬁf = . 6D

."Tﬁéﬁduration of each slope reduces, if the magnitude of the

normal force i is increased. However, simultaneously increases
the output velocity variation, as can be seen from the time laws
obtained by a numerical integration of equations of motion and
presented in Fig.7.19.

Interaction of resonant vibrating system with massive moving
body. The model of the VCKP considered above is valid only when

~the input link vibration is ensured with a prescribed amplitude.
“ In reality the vibration is usually obtained by employing the
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Fig.7.20 T%me laws of displacements and velocities of the VCKP
links obtained by the numerical integration

a) Nf=0.05, F=0.025, b) Nf=0.025, F=0.0125, c) Nf=0.025,F=0.01625
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Fig.7.21 AFCH of the input link vibration at several values of
the normal force:
(no moving force);
-65Rf; 1 = NE=0, 2 - 0.001 , 3 -,0.002 , 4 —0.003 ¥
5-0.004 , 6 -0.005, 7 - 0.006, 8- 0.007,
9 - 0.008 , 10 = 0.009
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elastic resonant VC. The magnitude of their vibration amplitude
at the same excitation level depends upon the contact interaction
forces between the links of VCKP. Moreover, a time interval
necessary for establishing a stationary vibration amplitude
exceeds many times the vibration period.

The simplest model considering an input link as a resonant
vibrator is presented in Fig.7.20. It differs from the one
presented in Fig.7.14 because the input link contains the mass
m,, elastic spring and a dissipative element characterized by
the coefficients kﬁ and H, correspondingly. The vibration is
excited by the harmonic forcing law Psinwt , the amplitude of the
force being very small and the excitation frequency equal or
close to the resonant frequency of the vibrator. A mechanical
contact between the links and a friction law remain the same as
in the case of the model in Fig.7.14. If the contact interaction
forces are considerably less than the excitation force amplitude
|Nf|<<|P|, the model in Fig.7.14 and the results obtained above
can be employed. However, in the case of a resonant vibration,

the equations of motion should be considered as

\ &

" - L33 A Y _" ey
mXx+ px+ kx = -Nf sign (x,—X ) + Fsinet ,

“ o (1. 139
m X = Nf sign (x,-x,) +F ,
Employing dimensionless quantities, we obtain
X,+ 72 X+ X, = -Nf sign (X,-X,) + ¥ sinet s
£ e 80 s - (1.14)
L o X=Nf sign (X,X,) +F ,
where
8 gt A8 i _2 - Nf _
B e s Gk /m)%, Eosalnl) T, s S,
AN X S Loy, winay s 5, etk $ kit _mol
F=-f,X="2(k/m)*, X=—2, X = —m/K)*, I =
P P 2 2 P A
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Assuming ~, Nf, ¥ to be of infinitesimal magnitudes, the

quantities eu, eNf, £F are substituted into the system (7.14i'and
the time averaging techniques are employed. v

We investigate the motion of the system in the vicinity of

resonance (& ~ 1). At the first approximation we search the

solution as )‘(2= a cos(t+m3), iz=—a sin(t+r), i:—A, where 8, 3, A

are assumed to be functions slow varying in time. ‘The

time-averaged equations for obtaining a(t), pa(t), A(t) -are
obtained as L

it S ] X
8 = —jetia - %:NIP- ﬁz]z- SHsinl(1-3)t + 61 ,
! ap = - gEeosl(1-8)t + B8], (7.15)
| Az—%starcsing +eF .
Stationary motion laws. In order i) obtain dynamic

characteristics of the stationary motion mode of the VCKP, the

case a=0, A=0 is investigated. As the value of the dimensionless

vibration frequency is close to unity, we denote
16 =c ,eetit B =% 4 B =y - 05 . (7.186)

Substituting (7.16) into (7.15), after some manipulatidn an
algebraic equation system is obtained as

1

‘E 41 M = éz B @ = éz 5_+_ g% - EZ: 0

4 7’ a® " a* 4

L [_z] (T:47)
= o = ! :

a 2Nf

from which amplitude & and mean velocity A of the outpdE link
are to be expressed.

Having determined the values of 2 from the system (7.1?) at

198

._Q_

different values of o, we obtain an AFCH. Families of AFCH

p Sigained at 7=0,03 are presented in Fig.7.21, the mechanical

factor of an input link being equal to 33.3 . It should be
noticed that the vibration amplitude increases due to the

directive motion of the output link subjected to the tangential

external force T . Substituting the value o=0 into the system

(7.17), the relation between the peak values of the amplitudes

and the forces I and Nf is obtained explicitly as

a:-g_icos[g]+1 ) {T'.18)
iR ZNT

It follows from (7.18) , that the vibration of the input

1ink is possible, if the condition

P O € W wi Lk (7.19)

cos [—EE]
Z2Nf

determining the maximum value of the normal force, is satisfied.
At the prescribed value of the amplitude & , the mean output
velocity value is obtained from the second equation of (7.17).

Transient motion in VCKP, i.e., a process of establishing

of stationary vibration amplitudes and output 1link velocity
values, can be investigated by solving time-averaged equations
(7.15), or by integrating numerically the equations of motion
(7.14). Further we present the results obtained by numerical
integration. Fig.7.22 presents the time laws of the VCKP being
initially in a state of rest after applying a harmonic excitation

to the input link. Fig.7.22 presents the transient vibration law

of the free VC (i.e.,at Nf=0, Fig.7.22a) and the transient motion
of the output link at several values of the mass e (rig.7.22b) -

‘It is necessary to consider the process of establishing of the

mean value of the output link velocity i;' If M>1, the duration
of the transient motion of the whole system is prolonged in
comparison with the free VC. At lower values of M the transient

motion duration decreases, however, it can't be shorter than the

‘transient vibration of the free VC. On the other hand, the
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y stationary value of the vibration amplitude is obtained only

after the stationary mean velocity value of the output 1link is

‘1 bt established.
W ; The above analysis enables to arrive at the following

conclusions:
1. Increasing a normal force magnitude, the AFCH curve

becomes more sloping. Nevertheless, the stationary input link

vibration amplitude value establishes during the number of

vibration periods approximately equal to the Q-factor of a VC

irrespectively of the normal force magnitude.

2. The transient motion duration in a VCKP is determined by
b the duration of establishing the mean velocity of an output link,

however, it can't be shorter than the transient vibration of the

free VC.
Step-motion mode. A VCKP can be effectively used for

obtaining precise small displacements of an output link, referred

to as steps. During one step the input 1link performs one or

l‘ several vibrational movements during which neither the vibration
9.44 o 1 L 0.5
g.21 h l [ Gl amplitude nor the output link velocity are established to their
.04 ‘ i‘ i L ‘J'W T il m; H¢_53 y stationary values. After that the excitation is removed and the
o R i |
_:f" N ”HuUWH i ﬁ - 8.2 3 both links of a VCKP perform some transient motion until they
=8.61 ' ' Feks come to a state of rest. As dynamic characteristics of such a
; : s : 14 0.8 ; ”
: & S8 100 152 m%: T motion the guantities T .. .% 5 % . L, ¥, ¥ introduced in
| max max max P P
5 Fig.7.22 Transient vibration of_the input link and the velocity - . Chap.6.4 are employed. Fig.7.23 presents the time laws of the
\ of the output link at w= 0.03_, «=1, F=0.65Nf : output link step subjected to five external harmonic excitation
a) Nf=F=0 , b) Nf=0.009 , c) Nf=0.009 &
waves of the resonant frequency w = 1 , the relation Fzgz being
U, 1% 1 ﬁl o held. Keeping the constant ratio between the forces I and Nf, the
8.61
sl -—ggg relationships in Fig.7.24 present the dynamic characteristics of
| 8.44 1 o.010 the step motion mode related to the magnitude of the normal force
2.31 1 0.008 - - a
T w 8.24 -—ggﬁ ! Nf. It appears reasonable to consider the value Nf=0,009 as
‘ 15 0315 + 4 @. Y i
&“q\,vv%/dk., . ::;g% g optimal, because by the further increase of Nf the step magnitude
i [ 28 4p 68 88 108 5o 1% 1bp é i ¥ .ax d€creases quickly, and, moreover, at the point the quantity
\ ; ;
¥, acquires its local minimum.
Fig.7.23 Time laws of the displacements and velocities of the Finite element analysis of VCKP. Consider a VCKP as a magne-
VCKP links during the step-motion mode at tostricti . .
Nf=0.009 , F=Nf/2 , m=10 , 5 excitation periods; B = oched to a ferromagnetic plane, Fig.7.25. In
1"04 2-6 3-0 ¥i the longitudinal direction force F is applied to the VC. The
ll 2 . . o
} g winding is connected to a high-frequency voltage source VE,
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Fig.7.25 VCKP with the magnetostrictive VC: construction diagram
and finite element model
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creating in the winding the electric current I(t)=I + Iasinwt
The constant component Ic creates the normal force attracting the
vc to the surface, and the alternating component forces the VC to
perform longitudinal vibrations and simultaneously ensures a
varying normal force magnitude. If the alternating component
i -0, the magnitude of the force F is assumed to be insufficient
t; overcome the static friction force. If IQ#O, the VC begins to
slide in the direction of the force F because of the vibrations
ih the contact zone.

If the operating point of the VCKP is selected on the
linear part of the magnetization curve of the material, the
normal force attracting the VC to the surface is obtained by
solving the magnetic circuit equation and is approximately

obtained as

e z ., (7.20)
i H
1 .

where p — magnetic permeability, N - number of loops of the
winding, gt magnetic constant.

In order to obtain the equivalent longitudinal force acting
upon each end of the VC, we employ the analogy between the
constitutive equations of piezoelectric and magnetostrictive
materials [140]. Expanding thermodynamic functions of the
magneto-polarized continua in the viciniﬁy of an operating point
B,,H, ;% , four pairs of the isothermal magnetostrictive equations
are obtained, one of which reads as

o = cle - e H

T
T y;‘e;s 2Tl

where B - magnetic induction, H - magnetic field strength, M -
magnetization, ¢" - stiffness tensor under constant magnetic
field strength, G e magnetic susceptibility tensor under
constant strain, e. = magnetostrictive tensor. It is preferable
in the equation (7.21) to employ magnetic induction B in place of
magnetization # . Substituting # = u_ 'B -H into the system
(7.21), we obtain
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o =Ce TigH
M

(8.22)
B = e;s + uougH
where p = 142 — magnetic permeability of the material. The
matrix equation of motion of the VCKP is
_ F T signl, P, P
MU+CU+KU-=- + + : . (1L 220
F I signU_ F-P, -P

The matrices M,C,K are obtained employing the relations of

Chap.6.1, explicitly presented in [71], and the forces P‘, P
caused by the constant and alternative components of the magnetiq

field strength Hc and H;, are expressed as

P‘= Hcsienu_, P = HasieMu 5 (7.24)
nl nl
where Hc = T?ﬁs———i———— . H; = = : CTie2B Yin
e sl s T He
ol e

The force P‘ can be neglected because it creates only a vefy
small value of the longitudinal deformation.

For presenting the results we employ the following
dimensionless quantities
& : N S
5=k, T=t®&N, Z=pwoK)®,N=-5,F=-7,
P 12
0 Un g px ﬁ“
U=—%kMm)">, U=—,
2 P
; g :
where m = prhl et = e e e vahl, e and » - density

and damping factor of the VP.

The characteristics of a single step motion caused by a sine

wave package excitation depend upon the normal force FN, moving

force F and excitation frequency w. It has been obtained that the
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Fig.7.26 Time laws of the displacements and velocities of the
right-hand end of the VC at F, k.=0.019, F=FNkr/2’ w=1

a) 1 element, b) 10 elements, c) 20 elements
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‘Fig.7_27 Family of friction law relationships
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“ | optimal values are &=1, ¥ 1=0,019 , F=F f/2. Fig.7.26 presents

the time laws of the displacement and velocity of the right-hand

3 end of the VC caused by five excitation waves P=uSinet at several

wmux // oo @%m, /wmux Trnox i different numbers of finite elements. It should be noted that the

simplest model (two d.o.f.) presents only a very rough

03 m 60 0,2 T / 40 < approximation in comparison with larger structural models.
max
o . . The relationships in Fig.7.26 are obtained assuming the
02 1 Tonax Jug 0 20 -

"0 20 40 ¢ 0 05 o ; normal force magnitude being not modulated, ( F =const ), and
$ir ] the friction forces being governed by the Coulomb friction law.
Fig.7.28 Relétionships of the dynamic characteristics of the VCKP Closer to reality are the friction laws including the Coulomb,
against the normal force modulation depth o at »=40 (a) ‘ . linear and cubic components. In the following we use the friction

and against the coefficient = i
& % v at a=0 (b) at % law family presented in Fig.7.27 and expressed by the relation
F k=0.019 , F = FNkr/Z

. pIPU|  -|PUly .
[1—ae —be ]751gn(PTU), (7.26)

F = -fF, sign(®,U)-1F,

where a+b=1.

It has been obtained that the dynamic characteristics of the

VCKP depend very slightly upon a modulation depth of the normal
force, and upon a shape of the friction 1law relationship. The
modulation depth is expressed by means of the quantity o ,
expressing the ratio of the modulation amplitude to the mean
value of the normal force. The quantity » defines the 1local
extreme values on the friction law curve shape. The corresponding
G | relationships are presented in Fig.7.28. It should be noticed
- that the modulation depth has no influence upon the dynamic

=2 characteristic values. Similar is the case with the quantity y up
I I to the critical point, when, once having started to move, the
W\ ' VCKP doesn't come to the state of rest after removing the
excitation (the motion corresponding to the local extreme zone of

the friction law relationship).

N\ ; 7.2.2 Directive motion of a unidirectional vibration

vibroconverter with an internal impact pair

Wk Mathematical model. Consider the dynamic behavior of the VD
in Fig.7.29a. It consists of the piezoelectric VC 1 and the rigid

MW‘ A body of the mass m , prestressed to each other by means of a
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Fig.7.30 Mean velocity relationships: g
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b- 1 - Nf=0.04; 2 - Nf=0.015; at E=o.o15 , m=m =0.5 ;
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d- 1 - Nf=0.04; 2 - Nf=0.015; at k=10, c=0.013
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connecting element 3 of the stiffness k1 and damping c‘. During
the vibration of the VC, between its right-hand end and the body
2 the impact interaction takes place. For the mathematical repre-
sentation of the impact interaction forces a phenomenological mo-
del is employed consisting of a spring and a dissipative element
connected in parallel with the coefficients K and ¢ correspon-
dingly. Assume the value of the stiffness coefficient k; being
considerably less than the longitudinal stiffness of the VC as
well as the value of the coefficient K. Therefore it appears
reasonable to assume that the influence of the connecting element
upon the impact vibration is exhibited only as the action of the
constant prestressing force Fo. The body 2 is in mechanical

contact with the rough plane surface, and the tangential

_dnteraction force is assumed to be the Coulomb friction force

obtained from the relation
Yo =IN sign x . (T:27)

where Xé — rectilinear displacement of the body 2 along the axis
0x, f - Coulomb friction coefficient, and N - magnitude of the
normal force holding down the body 2 to the surface. The input
voltage *Psinwt applied to the electrodes of the VC creates the
equivalent longitudinally acting harmonic excitation forces. The
angular excitation frequency w is selected in the vicinity of the
eigenfrequency of the first longitudinal mode of the VC in order
to obtain higher vibration amplitudes. As a result of the impact

vibration of the VC 2, the friction force impetus during one
<

vibration period isn't equal to zero, i.e., Jdet = 0, 'and a
o

directive rectilinear motion of the body 2 along the 0OX axis is
obtained, illustrating the principle of a VD employing purely
16ngitudinal vibration and excited by a monoharmonic external
forcing [47].

ik Taking on account that the values of the coefficients ki and
C, are comparatively small, we present the equations of motion of

the system in Fig.7.29 as
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[Mm] U +[cc] o g k] L1 . + . |sinwt + _i‘ (T28)
X, o X, 0 -P N |

-F 0 F +F

o N T
where M, C, K - structural matrices of the finite element model,
U - nodal displacement vector, FT— friction force obtained from
the relation (7.27), FN— normal interaction force in the contact

pair 4 expressed as '

sl {(uﬁ—xz)k+(ﬁn—3cz)c ., if u2x mF20,
N

0 , otherwise 5

U being the last element of the vector U, corresponding to :the
displacement of the right-hand end of the finite element model of
the vcC. 4

In order to investigate the behavior of such a system, in
place of (7.28) we consider two simplified models. The first ‘one
presented in Fig.7.29b reflects the directive motion feature of
the two body system 1 and 2 connected by the spring 3 as of a

whole. An external excitation here is applied by means of two

’lharmonic forces. The impacts take place between the rigid bodies

having the masses m and o, their displacements being denoted
through X, and X,.

The second simplified model presented in Fig.7.29c reflects
the behavior of the VC as of the resonant vibro-impact system.
The difference from the model in Fig.7.29a is that the body 2
here is fixed, and in essence it coincides with the model in
Fig.7.1c. It seems worth to notice that the impact vibrationAiaws
of the systems presented in Fig.7.29(a) and (c) differ ~very
slightly because the velocity of the translational motion of ° the
system as of a whole is considerably less than the vibrational
velocity of the VC.

Transient motion laws are obtained by integrating numeriCélly

in time the equations of motion of the model presenteé* in
Fig.7.2%9b from zero initial values during the time interval
5-10T, where I= %ﬂ — excitation period. Further the analysis is
carried out keeping constant the following relations:

1) m +m = const (total mass of the system);
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1
Ze = (k;/m{ﬂﬁ/mz)z (resonant frequency of the unconstrained

vibration)
&
3) c = [(mi+mzﬂg]z (Q-factor of the system is equal to 2),

k090 |
a *  (m+m)g

c = % w, where a demotes the mean peak-to-peak
i

.and employing the dimensionless quantities X =

Sm =K
m= o K=y
m, -+, ]Z1

amplitude of the vibration, obtained from the formula

g - max (xz—xi) -min (Xz—xi) , & - gravity constant.
te(o, ™ te(o, ™

It follows from the relationships presented in Fig.7.30a, that

"'the directive motion of the system is possible in the forward as

well as in the backward direction. The value Nf at the point of

reverse depends upon the remaining parameters of the system and

is within the range Nf=0,025 - 0,04 . Thus, a motion direction

system can be reversed by adjusting an appropriate value of the

critical friction force NI.

. The relationships of the velocities in the forward and
backward directions (Fig.7.30b) point out that the value of the
impact pair stiffness coefficient should exceed the stiffness of

the connecting element at least to one order. Increasing the

"damping in the impact pair, increases the velocity of the body 2

(Fig.7.30c). In Fig.7.30d the relationships of the velocity upon

the mass ratio of impacting bodies are presented. The values

..Nf=0,015 and Nf=0,04 were selected in order to obtain maximum

Svelocity wvalues 'in the forward and backward directions

.correspondingly. The shapes of the curves 1 and 2 differ severely
. from each other. The curve 1 (motion in forward direction) has
the maximum value at ﬁi=0,6 , and the curve 2 (motion in backward

direction) presents a monotonous decreasing relationship. The

. highest velocities in the both directions are obtained, if

m
3&20,6—0,8 , that corresponds to the ratio ﬁi = 155 = 4,
2

Stationary vibration is investigated employing a model with

the fixed output link, Fig.7.29b. The geometric parameters of the
VC are length 1=0.1m , width b=0.01m , thickness h=0.001m ,
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k
p=7800-2 , o =8.46 , the
m

m
Q-factor being in the range of 200-2000. The connecting element ; .
is assumed being perfectly elastic with coefficients k;=500002, P tj X . pp Fg
¢,=0, the stiffness coefficient of the impact pair k=100k1, and . t Y B t

Psinwt
T TI0N [TT1

U i
The first resonant frequency of the VC is 2%1 ="T47T1TRZICS A A Ur ' Uy

the impact vibration it increases slightly, dependent upon the [ it @“450 X (P=45°

material constants cfi=0.6x10

NN

NN

N

the amplitude of the exciting alternating voltage equal to 30V.
w

prestressing force magnitude Fo and upon the value of the Uo % Uo
coefficient K. The obtained motion law is in general 3 9 b

polyharmonic, i.e., simultaneously with the vibration component . ) Nﬁ)

of the frequency w , the vibration components with the multiple P
o

3 Rt
frequencies 2w, 3w etc. are obtained. Eigenfrequencies of the —J—*ilJ]I[] L TTTF::::§—
m B ®

rod-type VC are multiple, too, i.e., woz=2w°1, w03:3w°t etc. . c >

being approximately multiple to the excitation frequency. It §

2

appears as the main reason of an excessive excitation of the Fig.7.34 Finite element models of a vibrodrive

higher vibration components disturbing the expected motion law.
Fig.7.31 presents the AFCH of the right-hand end vibration

‘“obtained employing the harmonic balance method taking on account

the first six harmonic components. At the prestressing force

value ¥ _=2 in the - frequency range 14729-14749Hz stationary

vibration laws don't exist.

In order to reduce the influence of the higher harmonic

components it is necessary to employ the VC having no multipie
eigenfrequencies. The eigenfrequency spectrum may be adjusted by

means of the geometric shape (cross section) optimization

employing the optimal design techniques [14].

In Fig.7.32 three shapes of the rod-type VC are presented

“ | with different ratios of the three first eigenfrequency values. W
“ i The AFCH curves for the VC in Fig.7.32b are presented

I in Fig.7.33.

Fig.7.35 Time laws of the displacements and of the contact force

Free motion of a vibrodrive with an elastic rod-type VC and B impetus of the right-hand end of the _vibroconverter
at the free motion of a vibrodrive at F =0.075, m=m_,
¥

ka<(kt' f=0.5; a) NEL=1; b) NEL=6;

\
! 7.2.3 Free and forced motion of a vibrodrive.

a rigid output link is investigated by means of a model presented
in Fig.7.34. In the initial state the input link is elastically
compressed by longitudinal force F_and is held down to the ‘ Sl s Wehis | onilies e lne sl — S epir X S

surface of the output link by the transverse force Fy. At the
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time instant t=0 the force Fx is removed, and free vibrations
begin, the right-hand end of a VC interacting with the output
link. The output link begins to move Because of normal and
tangential interaction forces. After some time the VC comes to. a
state of rest, and the output link stops. We'll investigate the

dynamic characteristics of the obtained step motion of the output

link.
The dynamic structural equation the VD is
’ O } N
0 4
o . 0
M O U o] J§.C) U Ko U .
g S hi =of , (7.29)
O m it 0 0 u, 0 0 u, _F ‘
B
o 3
HO 7/

where M,C,K - structural matrices of the VC presented by a beam
type FE model, exhibiting longitudinal and bending elastic
deformation (two translational and one rotational d.o.f. at each
node). To take account of a contact interaction, together with

the equation (7.29) the following constraints are considered :

P, [go] <0, P [Ho]:o,

where P = [loool...looo,lsmp —cose O, o] ;
3

xhe n

T [@?_OJ"'IOOOH_COSP -sing 0, -1 ] 7 s

N n

The masses of a VC and of an output link are assumed to be

equal, m=m the bending stiffness of a beam ke being

’
considerablz less ‘than the longitudinal stiffness kU
i.e.,k <<k, and the Coulomb friction coefficient k%:O,S (;>For
representing the results the following dimensionless quantities
will be employed: x

— the displacements of the right-hand end of a VC and of an:’

- uN - u’l‘ - uO
output link uN= T uT: & ,uo: &
P P P
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— the impetus of normal and tangential interaction forces

= S - S
B = B 8. z =
N Klu Ao e e
P L'p
3 T
— time T = T

— normal force Fy: FZ i

x

where T - free longitudinal vibration period of the VC, u -
modulus of the initial compressional displacement of pthe
right-hand end.

: Fig.7.35a presents the time laws of the displacements and
interaction force impetus for the simplest one-element model of
the vibroconverter, and for the six element model, Fig.7.35b at
Fy=0,075 . By investigating the obtained time laws we find, that

the integration scheme behaves itself stable, regardless of the

comparatively large integration step (500 integration steps for

the whole integration time). The relations representing dynamic

features of the step motion of the output link are presented in
Erg.d. 365

Stationary motion laws. The simplest VD is presented by a VC

vibrating longitudinally and interacting at one of its ends with
a rough plane, Fig.7.34c. The magnitude of the normal interaction
force 1is varied with the frequency coinciding with the
longitudinal vibration frequency according to the time 1law
N(t)=(1+sinet)N . Employing the resonant vibration of the VC
under the excitation force Pi(t)=PiSinwt , there is a phase shift
equal to % between the harmonic vibration law of longitudinal
displacements and the normal forcing law. It enables to obtain an

optimal mean interaction force causing the VC to move directively

:8s a rigid body. The discontinuous Coulomb friction relationship

2

. W“=kIfN(t)SignI'Ih can be approximated as W= = kgﬁ(t)arctgaﬁg "

T

1where Un is the velocity of the right-hand (i.e., n-th )point of

the vC. The dynamic behavior analysis of the 10 element structure
oﬁv the VD is carried out by employing the time-averaging
techniques taking on account two harmonic components (p=2).
Fig.7.37 presents the AFCH of the contact point vibration (the

amplitude of the first harmonic component U:) at several

i




I Fig.7.36 Free step-motion
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h"

o

"

' constant output link velocity value is
i force of the VD.

" dimensionless quantities,

stiffness coefficients

: in the direction normal to the contact surface is

Bpr :

' directions are denoted through kN,kT,CN,CT .

different values of the mean normal force. The resonant frequency

of such a VD is the same as of the free VC at an arbitrary value

of the normal force N, however, vibration amplitudes depend

of N.

characteristic "moving force - velocity'", where the magnitude

the
of
of the

considerably upon the magnitude Fig.7.38 presents

the moving force is assumed to be equal to the magnitude

braking force Po at the constant rigid body motion velocity of

the VC (mean velocity value of the VC is equal to the =zero

harmonic component ﬁo of the velocity). The mechanical efficiency
of the VD is obtained as

Tk —i“— ; (T,430)
where Ah— useful work, A;xc— work done by excitation forces. The
formula obtained employing the time-averaged equations reads as

2P0[]?1)
= > (U" T ) ’
£ s (1) a(n)
where U?:>— zero harmonic component amplitude of the 1left-hand
end of a VC, Uiuﬁlt“v— first harmonic components of the left
and right-hand ends correspondingly.

Another model of a VD presented in Fig.7.34b differs from
the latter one by the external forcing pattern. In this case
prestressing is ensured by means of the force Fy, and the
equivalent harmonic excitation is applied to the right-hand end

; of the VC. The magnitude of the constant braking force PO at the

considered as a moving
of

and transversional

In oxrder to represent  the results in terms

the
of the

computed
longitudinal
ve 'ar" the

contact point are

’Vintroduced (k, and kL correspondingly). The stiffness coefficient

equal to
k k
l' s

The stiffness and fluid friction coeffi-

.~ kcos®p+k sine
cients of the contact rheology model in the normal and tangential

Computations have
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—

been carried out employing the following numerical values :

-12C . —og K =0,34
g =0.826x10"Y , d,,=113x107°%, o7 =8.85x10"L, e
-

N N kg I
= = = = = .
kK =1.22x10*2 " szkT=1.7x10 = 4 CN—CT-O , ©=5700 = pug 7

pependent on the values of the vibration frequency,
prestressing force and some other parameters, the VC of theL vD
can operate in the in the main vibration mode (single 1mpact

during the excitation period) as well as employing complex
the

A

vibration laws. For evaluating the vibration mode of a VC,

following quantities are introduced:

k=}_‘|A—A|/A;k°:§lé'.—a.bl/é;
A L i
= el

kfz Z | FNmax_ FNmaxi.l / Fchx <
e

b L 1, 0 ;o
! E— A\. e ! ? ai. ; FNmox o \ }_‘ FNmaxi. d
a—L —a — sl o =

t=1 ST ) =1

where A =

e — total number of periods during the integration time, U -

number of excitation periods necessary for obtaining .the

stationary vibration law (L ¢ s is assumed), Ai_ mameum

displacement value of the contact point during the i-th .per%od,

3 — minimum displacement value of the contact point during - the
i

i i = i lue of the normal interaction
i-th period, Fuman maximum va

force during the i-th period. : ' :
Employing these quantities enables to distinguish 2 the
parameter ranges determining the stability and existence .Fi91on
. g i in
of the main vibration mode of a VC, requiring these values rgﬁal
less than some constant value, e.g., kA,ka,kf<O,1 3 ' .
All the relationships presented below have been obtained in

the main vibration mode region of the VD, employing the folléy1ng

= FY :E PO s U.b L
1 ' SR ¢ = " " . = = .
dimensionless quantities: Fy K:ﬁ; cose; P %:gg 7 ;:53

1 o3 :

2 L2202 = 2 J=z. ey b
® =§ o= -g , where a= [aN+a_r] - ao—[aNo+a_m] N g
o o . # -

eigenfrequency of the unconstrained VC, aNo,aTo resonant

vibration amplitudes of the contact point of the unconstrai=médd VC

i d tangential
(at the frequency value o ) in the normal an (o
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directions correspondingly, a8, - contact point vibration
amplitudes at the frequency w; Po— mean moving force.
Fig.7.39 presents the AFCH of the contact point of the input

link at several prestressing force values assuming the output

link being held-up (zero output 1link velocity, u°=O). The

resonant frequency values increase slightly by increasing the

3 ~ﬁrestressing force Fy. The maximum vibration amplitude value
.remaining approximately the same, the left-hand slope of the AFCH

curve becomes steeper by increasing the values of Fy. The AFCH of
the tangential vibration of the contact point are more
complicated,and the positions of their peeks on the frequency
axis don't coincide with the peeks of the normal vibration AFCH.
Fig.7.40 presents the existence region of the main vibration
mode of the VC in the plane of parameters excitation frequency -
prestressing force (the shaded region corresponds to the values
k ,k ,k>0.1). solid lines are the level curves of the moving
force at the held-up output link (zero output link velocity). The

maximum values of the moving force have been obtained at 13<Fy<14
cand 1.08¢ o <1.1
The mechanical efficiency n of the VD is obtained from the
relation (7.30). Its value depends on several parameters, the
i velocity of the output link being among them. In Fig.7.40 for

each pair of values (Fy,&) the maximum value of » obtainable by

..» changing the velocity ﬁo of the output link is considered. The
dashed line presents the boundary of the region where the
,:_gechanical efficiency value exceeds 0.5 . The relationships of
the mechanical efficiency and the moving force from the output
link velocity are presented in Fig.7.41 by means of solid and
dashed lines correspondingly. It is worth to notice that the

maximum mechanical efficiency is obtained at the velocity values

. ﬁb close to the maximum available. The maximum output velocities

" dre obtained at comparatively small prestressing force values

(Fy<10) and exhibit tendency to increase by approaching the
“7. bourdary of the main vibration mode existence region. In Fig.7.42
¥ ‘the parts of the curves drawn by dashed line don't belong to the
*« main vibration mode.
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7.3 SYNTHESIS OF ACTIVE LINKS OF VIBRODRIVES
7.3.1 Optimal shape synthesis problems

As a rule, vibroconverters (VC) are mechanical vibrating
systems with high values of the mechanical Q-factor, therefore
their stationary as well as the transient motion depends
significantly upon their eigenfrequencies and eigenforms. In most
cases the relations for the eigenfrequencies and eigenforms ' can
be written, satisfying of which ensures the necessary dynamic
features of the VC. The VC synthesis problem can be regarded-: as
parameter optimization problem to be solved in order to satisfy
the prescribed relations.

The function minimization can be most effectively caxried
out by employing gradient techniques. Assume, that at the first
approximation a type of a VC is known (rod, plate, ring etb.),
and only certain parameters are to be determined, e.g., the cross
section of the rod, variable thickness of the plate, height and

radiuses of the conical VC etc. In such a case finite element

matrices of the VC can be presented as functions K(Db ), M(D,) of

the geometric parameters b.L of the structure as
aibx _axbi 0 0 it
Il atbxmzbz _azbz 0
I
H h K(b\.) T o(zbz_‘_maba _aaba " i >
‘ symmetr.
2 1 = i
£ b1 §€1b1 0 0
1
Eib1+52b2 fzbz O
A 1
M(bt) = Ezbz+fab3 7€3b3 s
symmetr.
o Pl .
where o= — , & = , C - Young's modulus, p - material
1 v 11 9 »
l.L 3 |
density, J._L — length of the i-th finite element.

In general, a penalty function y  minimization problem is

presented as

min wo [bvfi‘ ry«‘, 1=1_-ﬁ] ’

[R®) -2y | v, =0, 113E , (7.30)

*

PR i L Y
" ‘where bmxi_ vector of structure parameters, fl=wf — square of the
i<th angular eigenfrequency, ¥,- i-th eigenvector, defining the
. i~th vibration mode with the eigenfrequency W, h - number of the
structural modes under consideration.

In (7.30) the second equation is the structural eigenproblem
< e@quation, and the third relation defines the range of admissible
‘- 'parameter values.

s s The first wvariation of the function Ve due to small
variations of the structure parameters is presented as follows

h h
s ay oy

h 3y
buy = }“_céyﬁz_%gﬁ_ﬂab - (7.31)
= = oz, el ¢

i=1

In order to express éyl and 6fi through &b , we employ
the second equation of the system (7.30) and the relations

R T R R (7.32)

that follow immediately from the properties of eigenvalues and
eigenvec®ors of symmetric matrices [26]. Taking into account the
symmetry of the matrices K and M, we obtain the following

variational relations:
[% - EL%]yiéb + (K - £ My ~- é:iMy_L: 6/
2yTKSY, + ¥l oky 6b - &z =0 (7.33)

2yTMSy, + ¥, omy. 6b =0 .

From the second equation of the system (7.30) and from the
relations (7.32), (7.33) we obtain

8y= A_'Bsb , &£ =Csb , (7.34)
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where A=K - tM - 2My.y K, B= [ 55 - 50 - o ¥.9.5 |

T [ oK oM ]

C.;=7¥; a6~ %ap | Y-

i

&

Taking on account (7.34), the function variation defined by

the relation (7.31) is presented as

sy, =g, b , (T.35)

h
% 4 s 2t oo
where = ——wAVIR Y SNE g =  SRig Y the Y 'gradient V' Wedtor
& ey 4
- oy oz, ab -

i=1

of the function ¥ in the space of the parameters D.

The minimization of the function v is carried out

step-by-step employing the relations

PG R e W RE Y T Ry ST 1)
where bk, b*** - values of the structure- parameters at the
minimization steps K, Kk+1 correspondingly (bo— the first

approximation), o - coefficient determining the descent rate in
the gradient direction. The coefficient o is selected in order to
obtain a possibly high minimization rate and to avoid: an
oscillating behavior.

The inequalities of the system (7.30) are taken on account

employing the relation

pae L Ne by Jo pioladph s

3 el Ty J i
D A b b dE S e (7.37)
e A k+4 *
b T i bj > bj

If the constraint form is more complicated, the gradient
projection techniques are to be employed [14]. ;
Analysis of the cylindrical input link of a VD. The. direct

method to carry out optimization and synthesis leads through
obtaining the relationships between eigenfrequencies, eigenforms
and the parameters of the VC and selecting appropriate parameter

values.
The dynamic model of the piezoelectric cylinder of radius T,
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AT employed:
s =8.93x10"

height H and wall thickness h is presented employing the theory
of thin-wall shells. The radial, tangential and axial wvibration
modes are possible in such a VC. The response of the VC subjected
to the harmonic excitation can be presented as a standing wave,
the vibration of each point containing radial, tangential and
axial displacement components. As a rule, the nodal points of
each vibrational component don't coincide.

Further the results of the free and forced vibration

‘analysis of the piezoelectric cylinder are presented. The

following material constants of the piezoelectric ceramic BaTiO
3
A8 2 E 42 .2

- 2 i
5,,=8.55x10 "m /N, 5,,=2.61x10 “m"/N;

m°/N; e,,=-13.3c/m" ; kK _=0.208; o =5700kg/m’.
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Fig.7.43 presents the relationships of the first four

12
s6

eigenfrequencies, corresponding to the modes possessing axial
éymmetry and the three-fold circumferential symmetry. At the

height values less than 0.5r , two-dimensional analysis can be

. carried out in polar coordinates. Such relationships enable to

obtain the parameter values ensuring desirable operational

“frequency, e.g., to keep it in the range of 20-100kHz (at higher

frequencies too small vibration amplitudes are obtained, and at
the lower frequencies the acoustic noise is produced. It has been
obtained, that during the vibration corresponding to the third
tangential mode, the tangential component of the standing wave
amplitude approximately three times exceeds the radial component.
In the case of the third radial mode the radial component of the
standing wave amplitude approximately three times exceeds the
tangential component. The output link velocity and a torque of a
VD are wusually predetermined by the

tangential vibration

" ‘amplitude, therefore the third tangential mode is preferable.

However, often the corresponding eigenfrequencies are too high to
obtain the necessary amplitude values (they exceed the
eigenfrequencies of the radial modes 3 to 4 times, see Fig.7.43),

and in the case of short cylinders H/r<0.5 the third radial mode

‘is employed by means of introducing the metallic layer [71].

At H/r>0.5 the third tangential mode can be employed, because

its eigenfrequency value reduces significantly when the height H

L7, & .
nereases. In Fig.7.44 the forced vibration

; amplitude
relathDShips of the middle cross-section points of the cylinder

‘are presented, corresponding to the line where the contact
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| H ’ elements of the VD are situated. The excitation frequencies are

1 | assumed to be equal to the eigenfrequencies of the corresponding

modes. From the relationships in Fig.7.44a the optimal value of

| ; {18:: \:>?\<f {:'104 e 5 the ratio H/r=1 is obtained, enabling the most effective
‘ ) \Q‘\ 4 _—'__’f"// ' excitation of the tangential vibration. The optimal condition for
! ~—T— e /: v ! exciting radial vibrations is obtained at H=(1.5 - 2)r, therefore
.‘ 5 ~ T 2 ] 1 17— 3 _ preferable values lie in the range H=(1 - 1.5)r.
] 20 T 0 / 2 ‘ From the radial and tangential vibration amplitude component
‘ 10’5 15 2.3 Hir 0,05 015 0,25 hy/r relationships it follows, that the maximum amplitude values are
} a b 7 obtained at the cylinder wall thickness values h=0.2r, Fig.7.44b.
| Fig.7.43 Eigenfrequency relationships of the cylindrica_l vC s In order to select the points on the surface of the VC for
| 1N against the ratio H/r at h1/r=0.21 fa), and agaipst hi/r « . the elements ensuring the mechanical contact between the input
at H/r=2.46 (b): 1- i.first axial modec 2~ third .radial “and output link, it is necessary to consider the positions of the
| R ot T R b RS tangentla]_- o nodal points of the radial and tangential vibration. Fig.7.45
il | /T 7oA\ K . i - . presents the standing wave amplitude curve along the
‘ / \\ 4—-\ : ' circumference of the short cylinder (H<<r) .The dashed 1line
\ S pomar 025 0L \\‘\ ', presents the tangential, and the solid line - the radial
0,50 // \ ' <3 0 el ] \\\~ ‘_‘ i amplitude, the circumference of the cylinder being shown unrolled
/ \ﬂ: 2 L 0,05 WE) b 0,25 h{} into a straight line.
(| 0,25 7/\ ]— o The nodes of the radial and tangential waves don't coincide,
‘ | 0 Me—1" -2 "X being situated with the 1/4 wave length shift with respect to
05 1,5 2 I each other. Therefore there are no points in a state of rest, and
a R e e S e L . only unidirectional supports can be applied in order to ensure
I relationships against H/r at h1/r=0.21(\ ;37 > the vibro-isolation of the VC from the environment. The elastic
1 ; | and from hxlr at H/r=2.46 (b): 1-third supports are also possible, however, they allow the rigid body
| tangential mode; 2-third radial mode; L motion of the VC and are undesirable when regarding precision of
5 } L ——— - radial amplitude component; a a VvD.
3”\[ R T e T R ou R The contact elements are situated in order to obtain their
optimal vibration path. The angle of impact depends upon the
‘ \ 2ar Qistance Al of the element from the radial component node ~and
Ii‘ | i & o i upon the ratio between the maximum amplitudes of the radial and
! \ AL s X Al // \\ Al // tangential components. However, these quantities may be different

7 of the VD, and a full model analysis of the VD should be carried
/ out in order to obtain the optimal value of Al .

“ il /\(\'* / )(\\‘* e // )f\_’ X / due to the contact interaction between the input and output link
B
/

«
\
S
&
ok

#

Fig.7.45 Wave-forms of the forced radial and tangential !
vibration, places of fixings and contact elements 229
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7.3.2 Synthesis of asymmetric cycle vibroconverters A

Exciting asymmetric vibration cycles in VC with the first

eigenfrequency value being common multiple of other eigen-

frequencies. The eigenfrequencies of all the longitudinal
vibration modes of a rod type VC with the constant cross section
have a common multiple being equal to the first - mode
eigenfrequency. By varying the 1length and the cross section
inertia moment of a beam, it is possible to obtain the first two
flexural mode eigenfrequencies to satisfy the relation 2u;=w2? By
varying the cross section inertia moment and the radius va a
ring, similar relations can be obtained for ring-type VC.

For obtaining asymmetric vibration cycles at certain paint
of a VC, the eigenform values at these points must satisfy
prescribed relations. E.g., the Fourier series expansion of the

triangular pulse sequence of the height & reads as
1(t) = &( sinot+ ¢ sinZet+ & sindwt+...)

In order to obtain the vibration law of a certain VC point

approximating the triangular pulse sequence, harmonic component
a
27
correspondingly. It can be carried out by exciting in a VC the

A

amplitudes of this point should be equal to %,

polyharmonic vibration with frequencies @, 2w1,... and to adjust
the forcing amplitudes in order to obtain the necessary vibration
amplitude values. Having obtained the amplitudes of the harmonic
forcing law components and applying them to a VC simultaneously,
we obtain the desirable asymmetric vibration cycles. In orde;v_to
obtain necessary patterns of the electric terminals of a VC,_:Ehe
techniques presented in Chap.5.3 can be employed. In the most
general case, the prescribed vibration cycles can be obtéined
only at a single point of a VC. However, in symmetric VC (e.g.,

ring-type VC) there is a finite number of such points.

Exciting asymmetric vibration cycles in ring-type VC. Ring-

type VC are widely employed as input links of VD. However, - the
asymmetric vibration cycle excitation in such VC meets certain
difficulties, because none of their eigenfrequencies are ‘common
multiples of the remaining ones. However, ring type VC possessing

two eigenfrequencies satisfying the relation 2w1=wz can ° be
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emploYed in order to obtain the vibration law
£(t) = B( sinet * £ sinet) .

Consider a bimorfic ring VC consisting of two rings:
external piezoelectric (BaTiOa) of the thickness h , and
internal metallic (Al) of the thickness h&, rigidly connected
with each other. Electric terminals of the VC being properly
partitioned, radial (flexural) as well as tangential modal
Fig.7.46

vibrations can be excited [3,71]. presents the

-relationships of eigenfrequencies upon the thickness ratio of the

excernal and internal rings, where I’ denotes the average radius
of the VC, in this case assumed to be equal r:19h1. Varying the

* thickness of only the passive (metallic) layer h:’ the necessary

] ?giways move in the radial as well as in the

ratios between certain pairs of the eigenfrequencies can be
w

obtained. At the value —2=0.5 we obtain -2 =2 , at -2=1 the
h ® h
: 3 3 1
wa
value — =2 is obtained, etc.
(&)
4

Consider the asymmetrically vibrating points of the ring

circumference obtained by applying a polyharmonic excitation.

. Assume the second and third modes to be excited in the VC by

applying the excitation voltage as shown in Fig.71.47,. . .the vC
parameters satisfying the relations }’.L1=2h.2 A P=19h1. Inge L72] ik
has been shown that the relation between the tangential
components of the amplitudes at the vibration frequencies w,, w

= le - However, the points of a vibrating ring

g 3
is equal to Ei
2
tangential
directions, except the first, purely radial mode. Consider these

»':qomponents separately.

: Fig.7.47 presents the tangential components of the second
and third eigenforms of the VC (solid and dashed line
correspondingly), the circumference of the ring being unrolled
into a straight line. The triangles in Fig.7.47 mark the points,

the vibration of which presents a two harmonic component

P = ”

arproximation of asymmetric cycles. There are 4 such points along
“the Circumference. The vibration of two of them approximate
‘triangular Pulses with the steep front slope, and the remaining

two - triangular pulses with the steep back slope. The positions
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Fig.7.46 Eigenfrequency relationships of the bimorfic cyllndrlcal
VvC at h /r=0.055 (a) and at h, /r=0.198;

- radial mode elgenfrequen01es,
- tangential mode eigenfrequencies

M/\

Fig.7.47 Wave-forms of the forced radial and tangential vibration
at two-harmonic exc}tation of the second and thi;d

tangential modes, wa/w: =2; i
- points performing asymmetric vibration cycles with
the steep front slope, amplitude ratio aZ/a3=2:1 ;
- points performing asymmetric vibration cycles with

the steep back slope, amplitude ratio az/aa=2:—1
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. by the i-th vibration eigenform at the concentrator's

- amplifying two harmonic components, the

of such points are determined by the ratio 2:1 or 2:-1 of the
vibration amplitudes corresponding to the two modes.
It appears that the

vibrating points on the ring circumference exist at an

worth to notice, asymmetrically
arbitrary

ratio of the vibration amplitudes of the two modes. The amplitude

ratio influents only the positions of such points on the ring
circumference, SO it is possible to situate such points
symmetrically around the ring.

The above mentioned consideration remains valid for the

radial components of the amplitudes, too. Similarly, 4
asymmetrically vibrating points are obtained, their positions
being dependent upon the amplitudes of the two modal vibration

components.

7.3.3 Synthesis of concentrators and pulse-transformers

Asymmetric vibration cycle concentrators employed for

In VD

increasing the vibration amplitude of some points of a VC.
the concentrators of longitudinal and torsional vibrations are
employed for adjusting a VC with load and increasing the
link velocity [56].
Usually concentrators are characterized by their
61
amplification coefficient k“ = ——E , where é:, é:

output

amplitude

— amplitudes of

¢
the first eigenform of the VC. Similarly the asymmetric vibration

of the
vibration with the

concentrators transform the asymmetric
point into the
amplitude.

vibration input

same asymmetric amplified

In order to do this it is necessary to ensure the same

amplification coefficient value K for several modal

i

: S
k=kL: hli:ml

5

S
1

components,

Tler;

where &7, &' - amplitudes defined
input and
output. The synthesis problem of

pPresented as (7.30).

such a concentrator can be
E.g., in order to obtain a concentrator for

target function e is
Presented as




its derivatives being
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‘ \ [ In general, not only amplitude, but also a pulse shape can - = f W
,‘ be transformed. Consider several Fourier expansions of pulse . - EZ (Sir\ " | _smg}m"l'+ smaS;)t Iy ) yh 4 S—GE(S'ant L3 .’;)wt_\_smgwf
sequences, Fig.7.48. For transforming the pulses (a) into the ! y Bl
pulses (b) (phase shift), the necessary relations for the 2 5a

‘ amplitude amplification coefficients are K'=kP= =K = = k
\ where K — amplitude amplification coefficient.

Similarly, for transforming the pulses (c) into (d) the g e A a e N

-
—~
i
el

Fig.7.48 Pulse sequencies
and their Fourier

ex i
relations K' = —gk? = ikﬂ = = gk are to be satisfied. The PRIGIORS

ha <S'm(ut _sin2ut | sinduwt % )

varying cross-section of the rod-type VC ensuring the pulse ; 92";;2 L ik 9
‘ transformation from (a) to (b) with the amplification coefficient
‘ k=-3 was obtained employing the optimal design techniques.
Fig.7.49 presents the shapes of such concentrators for the first

; ‘ two (a) and three (b) Fourier components.

| Transformation of the input forcing pulses into asymmetric s

| | pulse vibration. For obtaining the asymmetric pulse vibration of

1 ‘; a VC, together with the prescribed ratios of the eigenfrequency Fissy ; a o

values the necessary forcing law (in general polyharmonic) is to 73

‘ i“ be applied. However, in the most practical cases it appears s valesd

| k preferable to avoid the employment of several input excitation Fig.7.49 Shape-forms of the rod-type concentrators of the longi-

‘ || sources of different frequencies. Alternatively, the excitation Fatie 3= 3 tudinal asymmetric vibrations: a)k=3, h=2 ; b)k=3, h=3
can be applied as a sequence of shape pulses (symmetrie or i

m asymmetric).
Consider a forcing pulse transformation. Taking on account, i

that a VC operates in a resonant mode, each sine component of the -

gl input forcing law is transformed into a corresponding cosine

‘ i component. If the forcing law is presented by the Fourier
expansion

Fig.7.50 ?hape—form of the rod-type VC converting voltage pulses
into asymmetric cycle vibration, w1=26324.5Hz, w_=52603Hz
2




f(t):a‘cos(»t + 8,cos2wt + a cosdwt + ... ,
the response of the VC is

U (t)=A sinet + A sinzet + A_sindet + ...

Assume that the components of the forcing law 8,80y as
well as the components of the desired response Aﬁ'Az"" are
known. Therefore, as in concentrator synthesis, it is necessary
to obtain a VC possessing the prescribed eigenfrequency ratio
values and satisfying prescribed eigenform relations.

Transferring the problem into modal coordinates, the
equations of motion of the VC read as

h
2 + D0z +oz, =) peosat , 1T , (7.38)

i=1

where ptj is the j-th harmonic component of the exciting force

corresponding to the i-th modal coordinate and is obtain
from the relation

P~ W 8 %, (7.39)%
where W is a vector with elements equal to 0 or 1. The unity
elements define the d.o.f. subjected to an external forcing.

E.g., if the application point of the input pulses corresponds to

the first d.o.f. of the finite element model, the vector reads as
1

V= 8 . The amplitude if the i-th harmonic component of the

autput d.o.f. (e.g., n=th d.o.f.) is.obtained as

. b i 5
T e A - (7.40)

The latter relation imposes the requirement wupon = the

components of the eigenvectors to satisfy the constraints

(7.41)

If a VC is excited employing electric voltage

the above relations in place of é:W the term é:TV

forcing, = in
should . be
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i-harmonic components are assumed to be prescribed, the

substituted, where V - vector depending upon the pattern of the
tric terminals of a VC employed for exciting the i-th mode.
consider a longitudinally vibrating rod-type VC transforming

the forcing pulse sequence presented in Fig.7.48e into asymmetric

elec

pulse sequence presented in Fig.7.48a. The constraints for the

first two eigenvectors of the VC are

nAhx L nAhzwz
B = 61151n_ Pg? woblcis g = 62162n_ o2 =054

Assuming the proportional damping C = oM, we obtain lh=h5.

If k=1, the target function for the VC synthesis problem is

'Jpresented as

2 2

® 61161n
v, = [—2—2] I UL T
w s &

i 21 2n

If the number of FE equals 10, we obtain the profile of a VC
presented in Fig.7.50 (the width of the VC is assumed to be

constant) .
The inverse transformation (force pulses in Fig.7.48a into
vibration pulses in Fig.7.48e) is carried out by the constant

cross section rod, because the constraints for the first two

eigenvectors are

Polyharmonic VC with nonlinear interaction pairs.

‘ Introducing a nonlinear interaction pair into a vibrating system,

can be obtained at

a prescribed polyharmonic response

monoharmonic excitation, because the nonlinear interaction force
can be interpreted as a polyharmonic excitation source.
employing the harmonic balance

The problem is solved

equations of the finite element model of a VC. The amplitude
geometric
characteristics of a VC being considered as design parameters.
The exact solution of such an inverse problem is hardly possible.
However, assuming the high value of the mechanical Q-factor of
the vC, an approximate synthesis is carried out as follows.

a prescribed

of the 4 VC.

Assume the harmonic component frequencies of

motion law being close to the resonant frequencies
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Presenting the equations of motion of the system in modal
coordinates of the unconstrained VC and taking on account, that
the overwhelming contribution to the response of the VC is
submitted by the modal components, the

which are very close to the excitation

resonant frequencies of
frequencies, the
constraints upon eigenfrequencies and eigenvectors can be
obtained.

For the sake of simplicity we restrict ourselves with the
case, when a nonlinear interaction takes place at a single d.o.f.
of a VC, an external excitation law as well as a nonlinear
function being known in advance. The structural equation of

motion is presented as

0

MU+CU+KU=R+Rsinet + R cosut + . (T.42)

O -
V(u ,u )
where M, C, K, U - structural matrices and the nodal displacement

vector, R - constant external force, ¥_, ¥ - vectors of the sine

and cosine amplitudes of the harmonic excitation force, W(un,ﬁh)—
function determining a nonlinear interaction force at the n-th
d.o.f: of the VC.

The function W is assumed to be known as well as a source
geometric shape of the VC and the matrices M, C, K. It is
necessary to change the geometric parameters of the VC in order
to ensure the necessary stationary response time law uh(t) to. ' be
equal to the desired periodic response u*(t) with the angular
frequency w . 5

The harmonic balance equations in modal coordinates of the

linear part of the structure read as

z+ hz+ o z=6R+ 6 Rsinet + s'R coset + & W(u_,u ), (7.43)
1 v 1 ouv 1 3 i1 = L in n n :

i= 1 ¥l
where Zi= modal displacements of the finite element model df the

vC , related to the displacements U as U=Az , hf
coefficient of the i-th mode, and 6 - n-th component of " :the

damping

i-th eigenvector 6U
The motion law U (1)=u*(t) being prescribed, the

function

-

e

- WU ,ﬁ ) can be presented as a Fourier series expansion with the
" n

: kmown coefficients as

v s %
W(u_,u ) = }d Wesin(k-1)ot + Wicos(k-1)ut . (7.44)

v=1
The nonlinear vibration harmonic component frequencies being

close to the resonant frequencies of the wunsupported VC, the

., equation system (7.43) can be approximately presented as

—[6TF +& Wz] [wz—wz ]+wh [KSTF +5 Wz]
X = 1i = in s o4 ES 14 ¢ in e
28 2 2 2
[w —w01]+ S hl
iéTF % wz] [wz—wz ]+wh [éTF 16 wZJ
X s 1 c in ¢ o4 £S5 1i s in s
2¢ i B 2 ’
4 [w —w01]+ w h1
i : (7-45)
=5 Ly [wz—w;Jmh_zs_ W
X. = in s 19 L in < iZB-—H
g %f"m247+ SEH ' : a
OLJ T
_étnw: [”z_th)+“haéth: vl
Xtc i FNS 2 » 13, d
* [w —w _]+ w h.
oi L
L KU =T + W
< <
: Finally, it 1is necessary to determine the geometric
_»parameters of the VC, possessing the eigenfrequencies o . and

oL
eigenvectors ét’ and simultaneously satisfying the system (7.45).

Following the above presented method, we synthesize a VC
producing the triangular asymmetric pulse sequence. As the source
model of the VC the
employed, requiring the right-hand end of the VC to produce

construction presented in Fig.7.29c is

vibrations similar to the triangular pulse sequence. In this case

it isn't necessary to solve the full equation system (7.45),

* making use of the circumstance that the appropriate adjustment of

- .»the first two eigenfrequencies turns the corresponding equations

J70f (7.45) into identities. Simultaneously the vibration law of
the right-hand end of the vC presents the sequence of triangular

pulses approximated by the first two Fourier components. Fig.7.51




Fig.7.51 S?ape—form of the rod-type VC performing asymmetric
v1brat}on cycles during the impact vibration,

“’z/wf =3.94; £ =14711Hz; £, =29222Hz

a-107)
ml &

B e ‘i b >/‘\
50 (/J/L7

14600 14700 . Hz

Fig.7.52 AFCH oﬁ the asymmeggic vibration cycle VC at
k1=5.10 N/m, k=5.10"N/m, ci=c=0, 0200, Fs—IN

o
(in the shaded area the asymmetric vibration approxi-
mating a triangular pulse sequence takes place )
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Fig.7.53 Time laws of the displacements of the right-hand end
of the ve and of thg normal impact interaction force at
k, =5.10 N/m, k=5.10"N/m, c =c=0, Q=200, F_=1N ;

1
14737Hz; b- = 14687Hz; c- f = 14656Hz;

a- £ £
14637Hz; e- f 14625Hz; f- £ 14675Hz

d- £

nwn
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presents the profile of a VC, the first two eigenfrequencies of
which are equal to f1=14711Hz and f2=29222Hz.

In Fig.7.52 the AFCH of the right hand end of this VC is
presented at the excitation voltage amplitude equal to 30V. The
desired vibration law is obtained in the shaded area in Fig.7.52,
the letters denoting the points, for which the vibrational
displacement and nonlinear interaction force time laws are

presented in Fig.7.53.
7.4 OPTIMAL CONTROL LAWS OF AN OUTPUT LINK

7.4.1 Aperiodic motion control of a piezoelectric

vibroconverter

Consider the equations of motion of a VC as

MU+CU+KU+T2 =R,
= . 46)
T lUr—uS B~=
where K , M , C, T, S - structural stiffness, mass, damping,
electromechanical and capacity matrices of the VC, R - external

nodal force vector, Q - nodal charge vector, 2 - nodal potential
vector.

The solution of the system (7.46) isn't unique, because U
and & , as well as Q are unknown. In order to obtain the unique
solution, an additional information about the electric circuit

parameters is necessary. Assuming an electric voltage value

i applied to the electric terminals of a VC known, we denote the

corresponding part of the nodal potential vector as 2,
$

presenting the vector 2 as &= éi , where §2— part of the nodal

potential vector corresponding to the remaining nodes. Similarly,

Q
the nodal charge vector is presented as Q:[Qi . The subvector Qz

2
corresponding to the nodes with no external electric voltage

applied can be regarded as zero, because a VC has no free charge,

Q

gte., Q= Oi . Partitioning the matrices T and S into blocks

corresponding to the partitioning of the nodal potentials and

charges, after some manipulation the system (7.36) reads as
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MU+CU+EKU =1, (1.47)

where K* =K + T8 17, T = T+ T 57's'

25200 oF 2 haalis?

Having obtained ¢ from (7.47) , the nodal charges are

expressed as

Qe Sl L gETy 2 (7.48)

where S* = 8, el - By cy

142 22 12

Presentation of the system (7.46) as (7.47), (7.48) enables
to decompose the source problem. The displacements of the points
of the VC with the prescribed voltages applied to the electric
terminals are obtained by considering the equation (7.47)
separately. The form of the equation enables to apply the
techniques presented in Chap.5 for obtaining the optimal control
laws of a VC. 5
Programmed control synthesis. Consider a rod-type “VC 7

Fig.7.54a. The right-hand end moves due to the 1longitudinal
deformation of the VC, the left-hand end being fixed rigidly. The
lower electric terminal of the VC is grounded, and to the upper
one, partitioned into m identical segments, electric voltages are
applied. It is necessary to determine the control voltage laws
éi(t) ensuring the prescribed motion of the right-hand end of the
vC.

Assume the prescribed motion being the movement from the
position unzo to uhza within the prescribed time interval tg,
where un — the nodal displacement of the right-hand end. After
the time instant t=tg the displacement value u_=a ES ol be
ensured, i.e., vibration damping is to be performed. The control
interval is assumed to be [O,tg]. Consider the initial and the

end states of the VC. At the initial state the zero displacement

and velocity values U(0)=0, U(0)=0 are assumed, and for obtaining

the end state the static equilibrium equation
KU(t) = T"‘@(tg) . (7.49)
is to be solved.

The components of the nodal potential vector
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2T(1) = (5,00, 2,08, D]
at the end state must satisfy the equalities
B, (5 )= 8 (L) == 848} =V,

where the potential value Vg ensures the equality u=a as a

static equilibrium state. For obtaining V:' the auxiliary problem

e g W (7.50)
is to be solved, where I = (1,1,...,1)7 . Having obtained Gn, the
" value of VE follows as
v ; a
V. = p=e (T..51)

Now the nodal displacement values at the end state can be

presented by means of the vector b , employing the relation

a o~
b=—w1T. (7.52)
u

The time law of the movement during the time interval [O,tg]

being expressed as (see Fig.7.54b)

g L) T eeri % £ % o (7.53)
g g o

the target function to be minimized reads as
-
g b . s T ra .
- =J [[U—s(t)b] [U—s(t)b]+[u—s(t)b] [U—s(t)b]] dt , (7.54)

o

Employing the dynamic reduction by truncating higher mode

dynamic contributions, the function y is presented in modal

coordinates. The vector U is expressed through the lower modal

. displacements as U:Atz, where A1=[61,62,...,6h] of the dimension

nxh is the matrix, containing the first h eigenvectors in its

columns, N - number of d.o.f. of the finite element model of the

VC. The expression of the target function is obtained as
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Fig.7.54 Programmed control of the aperiodic motion VC; 0 T + 0 T t
a- construction diagram, 1 - VC, 2 - voltage source; Vo U
b- prescribed time law of the end-point displacement VEL, 0“4 =
e :
m i -
s 0 T ot 0 T t
b
Z..
0 J to ] ' Vei Un
. - VeT b ar g
Fig.7.55 Satisfactory control area of the VC, m - number of -
control voltages - : 7 : .
0 2T &

Fig.7.56 Time laws of the control voltages and the end-point

displacement; G vm; ————— =V b VES




i
v = i [9[[2L—s(t)bi]z + ['zt—.s(t)b.‘]z} at , (7.55)

i=14 O
where b = 6:Mb :
For obtaining the minimum value of y the equalit%es
ths(t)bi, ét=é(t)bi are to be held for all i=T,N. Selecting -the

value h=m and substituting Z., 2 into (7.47), the control laws
%(t) are obtained by solving a linear algebraic equation system.
The obtained solution is exact at the selected number. .of
modal components h=m , however, the time law £(f) can be complex
and inconvenient for practical applications.
We restrict ourselves with the class of discontinuous

functions
2,
5, = Z h(t)
k=1

where k-th element of the vector h(i) is expressed as

it
. - g WENG: L
h (1) = 1 ,AE, G—19 B = G =41 D

0, otherwise ’

i.e., dividing the time interval [O,tg] into p equal parts, hk(t)
being equal to unity on the k-th interval, and equal to zero --on
the remaining part of the interval [O,tg] s -
Without imposing any constraints upon the magnitudes of .. the
control functions, the target function is minimized employing.the
gradient techniques. Fig.7.56a,b,c presents time laws of the
control voltages §L=V;L(t) and of the corresponding motion laws
uh(t) of the end point of the VC, the optimal control being
carried out for the first three modal components, h=3. The
control voltages are presented on the left-hand side of :the
Fig.7.56, the corresponding motion laws being presented on“phe
right-hand side. The dashed line presents the desirable msfion
law un=S(t)b. The motion laws were obtained employing the :fyll

dynamic finite element model (without truncation).

The presented relationships enable to treat the obtained

dynamic behavior of the VC dependent upon the number of the
rectangular pulses D available during the control time and upon
its duration tg . In Fig.7.56 T denotes the period of the first
vibration mode of the VC. At the control time value tg=0.25T a
satisfactory control wasn't obtained even in the case of the
continuous control voltage law, because the response is severely
- influenced by higher modal components.

At the values tg=T and tg=2T (Fig.7.56b,c) the control law
obtained by solving the inverse dynamic problem ensures a good
approximation of the desirable response. At tg=T this

. approximation remains good in the case of the discontinuous
control functions, independent of the number of rectangular

. pulses. At tg=2T the number of rectangular pulses influents the
obtained motion law, e.g., p=2 is insufficient to obtain a
satisfactory motion law. However, the number D can be increased
up to the certain limit, e.g., good results are obtained at p=5,
but the further increase of this value makes the approximation
worse. :

The above consideration allows to determine a region of
satisfactory control in the space defined by the number of modal
components p , control time { and number of control functions m.

In Fig.7.55 the shaded area at the value D=2 presents the domain
where the motion laws close to the desirable ones are obtained.
‘The left-hand border of the domain doesn't depend upon the value
P . The right-hand border moves to the right when increasing p up

to the certain value (in this case - up to 5-7). The further

“increase of the number of pulses doesn't improve the

““approximation, and the width of the area decreases.

Closed-loop control synthesis is carried out be applying the

techniques presented in Chap.5.2 based upon the inverse dynamic

problem solution. Fig.7.57a presents a piezoelectric rod-type VC

‘41, subjected to longitudinal deformations and possessing the

““*electric terminals on its opposite planes, a displacement and

*oh

. _Vvelocity transducer 2, presenting the values of Z and 2z as

“giectric signals and the control circuit 3, supplying the voltage
to the electric terminals dependent upon the input voltage and

‘upon the values Z and Z. The VC 1 is a vibrating system with a

high Q-factor value, and its motion between two stationary states
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of deformation is accompanied by undesirable transient
vibrations. The closed loop control circuit is to be obtained in

‘ order to ensure a prescribed speed of response and to damp

transient vibrations.

Consider a VC of the length 1=0.085m, thickness h=0.0095m
and width bD=0.012m, material constants being Cfi=0.6X10N/mz,
| 931:8.46C/m2, Bja=0.135x1qu/m, density p =7000kg/m° and assume

18 zero material damping, i.e., vibration damping should be obtained e

‘ purely by the control. The first longitudinal eigenfrequency of
M the cantilever VC equals ﬁ;8646.36ﬂz, vibration period being

T1=f:‘. Assume the desirable speed of response being equal . to
| i O.STi , and, consequently, from the relation (5.29) the values
il A=0.1T, , u=2x are obtained.

il If only the displacement and velocity of the end point of

the VC can be measured, the matrix Q reads as 0 T/Z n 3ﬂlz 2T1
1

thh:(oyov"-vo)1) ’ 3
Fig.7.57 Closed-loop control system of the VC with a single

\
3 where N- number of d.o.f. of the finite element model. Further we control terminal; a) construction diagram; b) time laws
n i g e ; of the right-hand end displacement of the VC:
“ assume G=0 , T =T", and the matrix R being expressed as 1- without a feedback; 2 - a=0; 3 - a=0.825; 4 — a=1,
| il the dashed line presenting the prescribed motion law
1] | e 5 1 _ R I AN
1l R = R"+a(I-R'R)|.| , ' 7855 i
| ; | —0310° !
LI | | 12294 | u
‘\1‘ n
‘ ‘ i.e., for obtaining the stability of the control system only the 3 2 L 4 _J-J-I-
‘ I R s o et e T A O S T A T
[ ‘ value of the parameter o is to be varied. The closed-loop ]

é;

‘ | matrices RVQ, RSQ are obtained by the relations of the Chap.5.2.

Fig.7.58 Closed-loop control system of the VC with two control
| terminals; a) construction diagram; b) time laws of the
right-hand end displacement of the VvC, the dashed line
presenting the prescribed motion law

1 [l In Fig.7.57b the transient motion laws of the end-point of g e a
} the VC are presented at several values of a . The dashed line in 3 Un407 /
‘ [l Fig.7.57b presents the dgsirable motion law. The system is stable % m /f<;f¥/Ck/ [
"‘\‘ only at the values «>0.825 , the best approximation to the v 048 // Y
[ U‘ desirable motion law being obtained at «=0.825 . /2/\J
[I In Fig.7.58a a control loop is presented in the case, when : /K \
1 | the electric terminals of the VC are partitioned into two £ 0,24 N
(h identical segments, and in Fig.7.58b - the corresponding mqtion il . \<3
;’ | (i laws when the rectangular input pulse of the duration T; is [ e
p applied, the dashed line presenting the desirable motion 1aw.. 0 T2 T 3Td2 2Ty
I ;




7.4.2 Kinematic pair motion control by varying normal force

Equations of motion of VCKP and real friction laws. The

simplest model of a vibration controlled kinematic pair (VCKP)
contains a rigid link moving on a rough plane acted upon by a
constant external tangential force F and friction forces,
Fig.7.59. In order to start the output link motion, the normal
interaction force should be less than the critical value of the

friction Fforce; i-e-; IN“< E :

The equation of motion of the VCKP link is presented as

mk = — Nf (1 + a g(ot)) signx + F , (7.56)
where -1< g(wt) <1 , a =<1 .
- — NT
Introducing the dimensionless quantities 1t = ot, Nf = — ,
L eMw 0t Lm .
X=X—, X =

= X — , in place of (7.56) we obtain the equation
F

= - Nf (1 +ag(t)) signk + 1 . (7.57)

The equations (7.56),(7.57) are valid in the case of the

Coulomb friction law, and at the known value Nf it depends only
upon the sign of velocity. In reality it is valid only in a very
narrow velocity range, and, in general, complex friction laws are
employed. Here we employ the friction 1laws containing Coulomb,
linear and cubic components. presented in Fig.7.25.

Consider the rigid link motion in the case of the time law

Nf being presented as a rectangular pulse

(|
Ca i |

. N_3dE 4Bk, gt 1y
Nz,if tlststz s
Assume, that in the initial state N;f >l and. skhe  igad

link is in a state of rest. Its motion begins at the time instant
when the magnitude of Nf becomes less than the magnitude of .the

force B, i.e.. sz < 1. . In the case of Coulomb friction, _the

velocity increases linearly
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N(t)

Fig.7.59 VCKP employing

the varying normal interaction force

N
T T
N* —
i T . T
1
&
Fig.7.60 Pulse-width modulation of thg normal force;
N - acceleration stage ; N - braking stage
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Fig.7.61 Time laws of the output link velocity at the réctangular
pulse of the normal force at several friction law
relationships: a) » =0(Coulomb friction); b) y .=20 ;

c) ¥ =80(non-stop motion); d) sine half-wave ndrmall
force pulse, » =20 ;

+—Nf;x—F;0—x
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If at the time instant tz the force N takes its initial

value N‘, the velocity decreases linearly as

- -NDG- 1) 0 - O = 5, T

Ll
v
ot |

until the zero value.
We investigate . the form of velocity pulses at

friction laws, when during the time interval from t:tz until the

several

next normal force pulse the velocity reaches the zero value. The

results are presented in Fig.7.61a,b,c at the moving force value

F=0.5N,f and the normal force value N =0.4N . The presence of
decreasing part of the friction Ilaw relationship enables to

obtain nearly rectangular velocity pulses. However, if at a

certain velocity value the moving force ¥ becomes greater than

the value of NT (the minimum point of the positive branch of the
“friction law relationship), the back front of the ve]ocify pnlse
is never obtained, because the velocity doesn't reach the =zero

value after the end of the normal force pulse, Fig.7.6lc. If " the

' force pulse has the sine half-wave shape, at the friction ftorce

law with the coefficient values a=§ . b=; PR R S 6 e 6
normal force pulse and the velocity pulse end simultaneously,
Fig.7.61d.

Mean velocity control employing pulse-width modulation of

normal interaction force. If during the time interval between two

force pulses the output link velocity doesn't reach the =zero

continuous motion mode. Fig.7.60

value, it operates in the
presents the sequence of width-modulated pulses of the period T ,

" where N+f>1, andN_f<1. Denote the velocity value at the beginning
" of the period through V; , at the time instant of the normal

force change from N to ) through 3 , :and .at the end. of _ the
period - through V: . In the case of Coulomb friction, the
output link velocity during the time intervals T~ and T+ varies

as follows:
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{ : R T (A s LI

=vt+( -NDT .

{T.58)

We restrict ourselves with the continuous motion mode, i.e.,

when i+>O, X >0. In this case the relations

¥ =0l - ﬁ_f)T_, :
{ (7.59)

PR e (s T
are valid, where T = T TR

The constant mean value of the velocity is obtained, if
T | s (T=60)

Substituting (7.60) into (7.59) , we obtain
T4t sdiee 1L

ke £ e " (T.51)
ik N'f -1 ;

It should be mentioned, that the relation (7.61) is
valid for any value of V; 2

As a mean acceleration value the quantity
PR R b (7.62)

is employed, defined as

(1 - N DT + (1 - No)Tt
s : : (7.63)

At the constant mean velocity value V; = V: , the wvariation

of the velocity is obtained from the relation

i (1 - N1y~
— - . (7.64)
v v
o [e]

The above consideration leads to the conclusion, that  the
mean velocity of the VCKP can be controlled by means of the pulse
width modulation, i.e.,by varying the ratio TY/T” at T++T—=con§t.
The formulae (7.61),(7.63),(7.64) enable to determine the
modulation depth according to the desirable values of- the
velocity and acceleration of the output 1link. Such a control
method can be easily realized in a real-time and in closed-loop

control systems.
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The techniques for vibration analysis and motion control law
synthesis of elastic structures with unilaterally constrained
mechanical contact interaction points have been developed,
systematically presented and applied to the dynamic analysis and
synthesis problems of vibrodrives.

. Considering the techniques, the following conclusions should
be made.

1. The techniques for reducing the number of the dynamic
degrees of freedom of elastic structures with nonlinearities
:based upon the truncation of dynamic contributions of higher
modes have been developed. Such an approach enables to replace
the dynamic equations of elastic structures with unilateral
,constraints upon the displacements and velocities by a low
dimension equation of motion with a nonlinear term representing
an elastic spring and dissipative element of unidirectional
action.

2. The numerical integration schemes of linear dynamic

equations have been extended in order to deal with nonlinear

‘ones. For the direct numerical integration of equations of motion

of the structures with wunilateral constraints case oriented
algorithms have been developed employing the Lagrangian
multiplier approach and supposing the minimum work done by
‘interaction forces for making corrections upon the velocities and
accelerations at the time instant when the structure meets the
_constraint. The approach was applied to the structures with
kinematic pairs interacting by normal, oblique impact and sliding
friction forces. The ammount of computations can be reduced in
the case of the structures with local zones of nonlinear
1interaction.
; 3. The analysis techniques of the resonant vibration of
wé#asfic mechanical structures with nonlinear contact interaction
Points with stationary or slow-varying amplitudes have been
?g;eloped. For the stationary motion law analysis two alternative
techniques have been employed: the solution of boundary value
"pfoblem in time and the weighted residual approach, a special
‘case of the latter being the harmonic balance method. Motion laws

in terms of the slow varying amplitudes have been obtained by
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means of the time averaging techniques. When integrating the
averaged equations numerically, at each time station harmonic
components are obtained by means of the Fourier transform. The
application to the unilaterally constrained structures requires
to transform equations of motion employing the higher mode
dynamic contribution truncation techniques in order to obtain ‘an
equation system with a nonlinear term.

4. The programmed and closed-loop control synthesis methods
have been aeveloped employing the optimal control techniques, the
inverse dynamic problem solution and the higher mode dynamis
contribution truncation approach. The method can be applied to
the motion control synthesis of structures with the feedback
circuit consisting of logical elements. A linear closed-loop
control with the displacement and velocity feedback is obtained
by employing the inverse dynamic problem approach, the prescribed
motion of a structure being expressed as a superposition of
exponent functions. A structural motion control synthesis with
the logical feedback circuit has been carried out by resolving
the dynamic equations into modal components and employging a
separate feedback for each of them. The excitation laws ensuring
the prescribed resonant vibration patterns of the structure
points are obtained by solving inverse dynamic and optimization
problems.

5. The finite element models of piezoelectric’ vibrocon-
verters (VC) have been obtained. Employing the variational
formulation of thermopiezoelectricity the relations for obtaining
matrices of piezoelectric continua finite elements have been
derived, vibration energy dissipation models and the relations
for taking account for vibroconverters as components of an
electric circuit have been obtained.

6. A full model of a vibrodrive (VD) taking account - for
rigid body motions of the vibrating links has been obtained, -‘the
finite element models of each link being presented in truncated
modal coordinates. The contact interaction models for
point-interaction and travelling wave vibrodrives have been
obtained employing a small displacement finite element model .and
phenomenological models of the interface between contacting

links. The dynamic characteristics of vibrodrives have been

formulated.

considering applications, the following conclusions should
be made.

7. The free and forced impact vibration of a rod-type VC has
been investigated employing the finite element model and
phenomenological models of a contact interaction. The following
results have been obtained:

— the normal impact interaction of a discrete mechanical
system approximating the continuous one has been shown to be
elastic, irrespectively of the restitution coefficient values in
4he vicinity of the contact point;

-it is reasonable to employ the rheological model of the
dynamic contact interaction, if the stiffness coefficient of the
ﬁodel exceeds the static stiffness of the structure at the
contact point less than to one order (10 times). Otherwise the
impact vibration law doesn't depend upon the 1local contact
condition;

8. Considériné a forced longitudinal impact vibration of a
rod-type VC employed as an input link of a VD it has been
obtained, that the solution of time-averaged equations
considering two Fourier components presents satisfactory results
only in the case of the two-mass elastic system. For obtaining
reliable results when considering structural models, at least
four Fourier components are to be taken on account.

9. Employing the time-averaging and numerical integration

-techniques a step motion of vibration-controlled kinematic pairs

(VCKP) as well as free and forced motions of a VD have been
investigated employing the lumped-mass and finite element models,
complex friction laws being presented as a superposition of the
Coulomb, linear and cubic components. It has been shown that the
motion of the links of VCKP can be controlled employing a purely
‘bangential vibration in a contact zone. The values of the normal
.contact interaction forces have been obtained, ensuring equal
:Steepnesses of the slopes of an output link velocity pulse. ' The

‘duration of transient vibration law has been shown being

. dependent upon a Q-factor value of a VC and upon the mass of an

output link.
10. Investigating the motion wupon a rough surface of a

system of two elastically connected masses impacting upon each




other under the harmonic excitation law, the directive motion of
a system as of a whole have been obtained. The direction of
motion can be reversed by an appropriate adjustment of the
Coulomb friction coefficient value. An analysis has been carried
out and the dynamic characteristics of a VD employing this
operation principle have been obtained. The shape forms of the
rod-type VC and a frequency range of vibration laws containing a
single impact during the excitation period have been determined.

11. The shape form synthesis problems have been solved
employing the optimal design techniques. Special features of
exciting asymmetric vibration cycles in ring-type VC have been
pointed out and the locations of asymmetrically vibrating points
on the circumference of the ring have been obtained. Placements
of such points have been shown to be severely influenced by the
excitation level of modal components. 4

12. Shape forms of asymmetric vibration cycle concentrators
for two and three Fourier components and of a transformer of
rectangular excitation pulse series into asymmetric triangular
pulse series have been obtained.

13. By means of an inverse dynamic problem solution in modal
coordinates a VC with the internal impact pair excited by a
harmonic excitation law and producing a polyharmonic vibration
law has been obtained. A shape form of a VC has been obtained
ensuring an asymmetric triangular pulse series response.

14. Employing the developed techniques the optimal control
laws and feedback circuit parameters have been obtained ensuring
a damping of transient vibrations occurring due to the externa{ly
excited stepwise increments of longitudinal elastic deformation
of a VC. The programmed and closed-loop control laws with the
displacement and velocity feedback have been synthesized.

15. Investigating the models of the VCKP employing a varying
normal force, the complex friction laws ensuring the equal slopes
of an output link velocity pulse have been obtained. In sSome
cases presence of a descending slope in a friction law
relationship causes a non-stop motion of the output link after a
normal force pulse. At a high normal force pulse frequency, a
stationary motion mode is obtained, the control of the velocity

and acceleration values being possible by means of the

width-modulated pulses of the normal force.
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APPENDIX 1. NUMERICAL INTEGRATION SCHEMES. THEIR PARAMETERS
AND FEATURES

Al.1 ALGORITHM SSpJ (O.Zienkiewitcz et.al. [46])

Algorithm SS22

~

s Uum= Uﬁ’ fltsiAt 5
UL+AL= UL;
B a B A e a8 B KU )
-O(t—('*'i +"‘2—2)( 3 t+AL tALY ?
g 2
3' UL+A!. R U’. i AT’ Ut L 0:2) —A—tz- ;
ﬁum & [.Io. i3 a:Z)At ;

The matrix £~ for the algorithm SS22 reads as
1 1 7.2

E® = 0 1 1 (2.49)

woat? 2hatterat’s,  1+2hate +wlat’e,
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Algorithm 3532

1. U, A= U+ Uoat + Uat® ;
Uqu.: L T U'_QiA‘t ;
Ut+AL= A
@ Af2 At? it ~ ~ e
2. = :(exAtM+_2— ch+—6— eaK) (R—MUL+AL—CUL+AL_KU£+AL) ,
o " Atz “w Ata
3. U“m—UL+AtUt+—2—UL+o{3’—6—;
S : at?
wae = U, + 2t U+ aim—z—,

1 [

2
dud @ AL
Uum "3 UL % S IR

The matrix £? for the algorithm SS32 reads as

1 1 1/2 1/6
1 1 1 1/2
E¥= 0 1 1 1

2 &> e zAtz At?
woat 2hatrosat®s,  1+2hate +w}il e, 91+hA't62+wz%—63

Algorithmic features of the above presented schemes are

Summarized in Table A1.1, taken from [46].
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A1.2 GENERALIZED NEWMARK'S SCHEME
(M.Katona ,0.Zienkiewitcz, [25])
For an undamped oscillator (h = 0) the error of the

displacement U“A at the time point t+Af is expressed as

t

1
AtS

[ Caatt VAT e AL C.At‘+...] :
o £ 2 1 4

where the values of the coefficients C_L are presented in Table

A1.2 , taken from [25]. For the m-th order scheme at arbitrary

parameter values (3 ,...,3 , we obtain C = C= C-=...= C= 0.
Therefore in the worst case the error doesn't exceed T=O(Atm_1).
Selecting parameter values Bk ensuring the value Cm“= 8.5 a
higher accuracy order can be obtained. However, stability

condition of the numerical scheme is to be regarded when
selecting the Bk values.

In [25] it has been shown, that the necessary and sufficient
conditions for the numerical scheme stability when applied to the

undamped oscillator equation are as follows:
Tiee=h 2% a > 0, az a; a,z 343

m

Il

Boi e sl a8 e = 0,0 a8~ a.ax0; (A1.1)
v 2 2 -
R a°> B ai,az,aa,a; 05 aiazaa— aoaa— 8‘312 00
where the expressions of a through the parameters £ are
presented in Table A1.3.
From Table A1.3 , conditions (A1.1) and assuming A= wAt = 0O
we obtain the necessary stability conditions as
£ 3.z B5102
s e 6,2 8PS (A1.2)

il LR i O] Gl 2, ~Apl= Jjd

3

A numerical scheme has no numerical damping, if & Ehe

following equations are satisfied:

m

1]

2. as 0
-

=@ a,a-3aa=0 sfa-= 0y ; (AT 3)

mo=4. fadaia g gt g 8t 0 et g g 0)
AR R o 3 & % 2 &
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= -3

The values of the parameters 3, can be selected in order to
submit some other features to a numerical scheme. E.g., for
obtaining an unconditionally stable scheme, it is necessary to
satisfy the conditions (A1.1) at wAf — o . At m=2 (traditional

Newmark scheme) these conditions are as follows

£z B, , B= 0.5 .

o ES

Table A1.4 presents the values of parameters ﬁk and
the corresponding algorithmic features. The well-known Houbolt
and Wilson schemes can be regarded as special cases of this
algorithm family. The traditional form of the Houbolt scheme is a
multistep one, and it can be identified with the generalized
Newmark scheme after presenting as a single-step one. It can be
carried out by writing the relation (2.60) for the time points
t-2at, 1-At, T, t+At and eliminating from the obtained system the

. e (3>
derivatives U, U, U.

A1.3 FINITE ELEMENTS IN TIME DOMAIN (HERMITIAN INTERPOLATION)
(J.Argyris et al., [1])

A1.3.1 Hermitian functions

P = 0 (linear interpolation, 2p + 1

I
o
~

O (o]
O A= IS 3 2,,=£
P =1 (cubic interpolation, 2p + 1 =3 )
=1 - 3%+ 267 vire@maefaae? 0,
3 2 3 i 2 E ]
= (g = 2L £ )Y ’ =L e AT

P = 2 (fifth order interpolation, 2p + 1 =5 )

2 4 4
3,= 1 - 10¢%+ 15¢*- &¢° o = 10rE- 158" &" ,
o= (¢ - 62% 82*- 3e%)at |, = (- &%+ Tt 3%)at

g2 3_a < %fs)Atz ) Bz*: (é{a_ £t ;{5)At2
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A1.3.2 Numerical schemes

Linear scheme, p =0

1B1x1 7 1Boxo +P1 2

B=T1+astC, Bl=T+patcC,
B ast K, BP- At K,

G be Lapition , B'=-pat T,

R B - B=1,

14 12 14 12 " i
B B P
44 4.4 1 O 4 . © 8
B = ’ = ’ P = y
(e 4 d 22 4.0 24 22 ES
B B B B P
1 4 4 4 1 O 4 © 2

K= R, B Wie i B N0, cals 89, sy |

4

In the case of homogeneous equation, i.e. at R= 0 ,
substituting the relations

o = -

U=-CU-KU

U==€6U0-K0

into the above formulae, we obtain, that for the 1linear scheme

the following equalities are satisfied:

i
1

U+ At(-p, U+, U) ,

. X « .
U1= U; + At U°+ At (—a1ﬁon+a1U1)

At the parameter value ¢ =é this scheme coincides with the
traditional Newmark scheme with the parameter values y= % g B:% L,

1

It possesses an unconditional stability at % <hE <19 and af'n® =

exhibits a numerical damping.
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Cubic scheme, p = 1

3B1x4 i aBoXo +P3 i

B~ I + aat C + a,at?(C*- K), B*= T + p,at C+ p,At%(C*K),

31 3 o

B%= aat K + o At*C K , JB= pat K+ pAt°C K,

a

B'= —a At I + o At*C » Bl=-pat I - pzAtZE -

3 o
» JB'=1 - pAt’K ,

- I:(oti—otz«}-fs’z)At I+ azAtZC]Ri-F [(—ﬂimz—ffz)ﬂ Lot ﬁ’zAtzc] R,

2 2
P3= At ( Bsz_ o(zRo) »

For the cubic scheme the following equalities are satisfied:

<3)

. . w @ (3
Uf Uo+ At(—ﬁ’iUo—%-aiU(i- AL (szU( ~ A% a2U1) .

<3 <{3)

U,= U +atl_ +at? [ (-a, 3, +6,)U_+ (o~ )T, )+Ataiﬁ’zU(—Ata1azUi] .

The cubic algorithm family possesses high accuracy, and at
the parameter values %S ¢ =<1 the unconditionally stable numerical
schemes are obtained.
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Fifth order scheme,

p =1

sBxxa i 5B°X° +P5 ,
¥

IR 10t OF0 2 A B0 0y « matigesifn

B ; . XC) ,
Bi*= oAt K + aat?C K + aAt?( C K - &) ,
Bl'= At T + oAt C - aat’ (oK),
0 aZAtzi = aaAtaE X "
=1 + pAt C+ 7,412 (C*~ K) + FAL(C - CK - K o,

14
5Bo 3
st;z: BAL K + ﬁzAtZC K + rs’aAta( CK-EK*),

N Bt
Bo= BAL L - pAtC - pAt(C* K ) |

el
2 2 -
8o =1 - 3,At°K - pAt°C K ,

e [(ai—a2+ffz)At I + (o043 )AL*C + a at?( C* - K )]R+
i

(B BIAL T + (bt )ALC ~ pat™( 0° - K R,
V= (B,~o+3_)At?T + #,at7C ]R£+[(—otz+ota—/?3)At2I + o ALC ]Ro.

= ig % e bt : e

3 i _2¢-3
B e+ BT e e s SaE , B A

For the fifth order
satisfied:

scheme the following

(3) <(3) (4>

. . i1 " > (4)
U,=1U+ ,31;(—(31Uc’+<>L1U14r At B,U - at o U - Atzfs’aU( + At%a U )

: 0 " (3)

U= U +atl_+at? [(“"‘Jfﬁ’?z Yo+ (o e )U, I+t (e -2, ) Tt
(3) (4) (4)

+At(‘0{10(2+aa) Ui— a:.ﬁaAtz U<+ a1a3At2 Ui]

The schemes are

125:51

stable
. They possess high accuracy,

unconditionally at . the

values however,

of the cubic ones.

equalities are

parameter
larger.
amounts of computational resource are necessary than in the case

Table At.1
R e haso
Method | Parameters |pr——o Amplitude o, _. ;. Phase Amplitude o
error  gppgp | Stability ShIGh gr'r‘or- Stability
522 | e ,8, 0(at®) ocat) 0.528, <0, 0ut) ot 0.5 <a,
8,=0.5 0at?) 0catd) 0.558, 0at?) 0(atd) 0.528,
8,=0.5 2 2
1 , 4 o4 2 t 2
ore1/6 ot o @ At2(5 0(at%) 0td) a,at2¢h
532 | a=8,-0.5 20 % 12a>1
b=8,-8,-% | 0(at?) o0atd) b20 0(at?) 0(at?) b0
c=a3_gez+!z D<c<3ab D<c<3ab
- a@ 5 §
b=- % out? owmtdh c<-a 0(at?) oat?) conditional
<6l2 ini
w At4<6 c’ stability
b=1/3 ot octd) wat?<s
a+C=0
1
i OO Dt T,
3=c=0
Table 41.2
C; m=2 m=3 m=4
£, (-2p,)/2 o o
£, (2-3p,-3p,)/6 (6Po-6py-1)/12 0
Cs (1-3p,-p;)/6 (7Po-6B4 -S0p,-19) /360 (~P3+3By-2p;)/12
Cg | (47-2108,-30p,)/720 (150p,-105B, -90p,-19) /360 (~30B5+100p,-60B, -10p,-1) /240
Cr ~ - (-52B 5+1 20p,-1 0o, -40p 3517480
Table A1 .3
a,— m=2 m=3 4m = 4
a, 4+22(,2()0—2[)1) 4(2[)2-1)+12(1+4[;0—6p1)/’3 8(Po-B3)+a" (2p5 -dp+2p, )/3
s :42(21-;, 1) 4+12(6{x1-6[12—1 )3 402841 )+{32(2—2[;J-6[32+4p1 )3
S0 2
il a2 22(2[;2—1 ) 4+az(e-a2-sp3-2/3
as 2 2 222pq1)
= 12
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l
‘ ‘ \“
M‘
1
|
Il Table A1.4 ; ) : 2
_‘\ Al .4 Wumerical integration formulae for rnonlinear systems
|1 Method 8 |p, |p, |Stability Taccuracy — oy -
1| g 2 | condition | order v Bic 215
m=2, 1 1 . 32<6 ~ . . oy . .
maximal accuracy bl i i % MO+CU+KU=R (1) M3+ CU+RU=W (U, D) +R (1)
m=2. 1 S . 5 a linear system nonlinear system
‘ uncondi tional stability 2 2 v ;
m=2 1 2 @dy ati-k
‘ I ’ 0 gii®s - < : = 2. Al G W :
i explicit scheme 2 M 2 : 1. e E Vg G ceat pract ceae
iR m o= 3, 1 1 o : whgre W, op.= WWy,ae,Upsay)
11 maximal accurac = % Z o a b, =B __.Atm } e i
\ | | m =5 Y 3 s 1 kTR BT [ ntgnlinear‘ equation at each time
B = 3. . ) step ) )
\ unconditional stability | 2 | 2 |2 Ao é . by a5 iy a) simple iteration
| = T kR “k7o , k=0.m] i+l i i il
1 moE, o | |3 22<4 2 HoE o ARUEIE BTy M L ge s inli2.. 0
| explicit scheme
iy 2 : ; % Newton-Raphson iterati
| I ZT po A 1.431.42) 1.4 2w 2 : BBl , . Gy iay - b) Newton-Raphson iteration
| ilson scheme ; i T i ol
H N‘“ m =3, 6 11 2 a¢ 5 numnerical where f\:b;M+D:C+b*1{ Ar+At; UM-At t,+At,+N S LA o
1 iz = ¢ 5
o “ Houbolt scheme El 2 damping o Gua{‘nuu (Mq2+Cq2+Kq0) § S tgaaso o
1 "3, o |2 |12] a2ase # . where A1 =Mbjeb] c-— )+b (K———
(8 |l explicit scheme . ¢ T =0.m ;
| ‘t\\“ % & Uc+Ac"qk e AUUAc i atyn sl tangentlal Imeamzatlon
| k"“ .
(
{l
[ £ e "
| Mi1M12] 1% [C11°12] Oy 11“12] 21} 40 LW Fo ohte2
I i 2y i1~ > &+ = + R(t » = ¥y e
| M ‘ HyyMoo| [T "] €21C20f |U2| {K21¥22]{ U2} V2 R A
[ﬂ\ ] system with local nonlinearities
“ 3
fl
| s
1l 3 1 AELE 1 , 1qi i i
11 : 2. (R -a, ATlA )AU; A, ATIGL + W (Lz,u2>
11l . a L
" a1 2 iy = =
F w Where A,,= A,,y- D]_aﬂ s P 2 kol U2,r,+AtJ - ‘Gz v+ht’
\ i u,.U, 210,70,
| ‘1 : ¢ = =
Pl J : U . 'AliAuAU 3 AnGi { Ul'u1,t+&t i Fl G1 tHhr T
|
| 1d 4




—

Table A1.6

nEoCﬁ+KU=R(t),

displacements arn
Qﬂe;hgre agtive, on the velocities

and, when
Jocal nonlinearities

My g My HUy 511612]
] e
Moy Moo |Ugl | C21C22

<
p,U,% d;

k

(k)
i P,U,= d
system with unilateral constraints 2

economi zation of the scheme taking on account

2

U
]

1 Ky,K

+
2 K21K

)

12 || "1
22} Y2

k=

1.»

p=100 P2]

=R(t),

whera RO=(PA'1PT)

- *® *
3h_ {? =qk+bkAU ¥ ??
4 epgkﬂm*p')‘l(

normal

at the time point

F= xo,c+At+A

constraints ,

2. aad el pix, 2. Ayl

interaction force impetus
during one time step ( t,t+At):

A
S =—2_§(Ft+10,t+5t)+a1,f,+5; A
normal contact interaction force

2 b . SSReS)
iteration for determx}n}g\gq__aoctrl;oe. U=

282
'1(PA'1G—d0)§

- -t 2, .,

oL

(k)“'d) 1w ;
P U™ W k=tom 3.0

(k) =
aU= HPTA,

where H22=M22

t+at 2572

(k)

20, ¢

¥ -1
where A,)=A;0-A21A11R12

= 0% f* rone AU =-A
= ay + B}au, rae aUy

I T
=6, - P2 A5

X-1pTy-1 A-13 _d )
2= (R, ATIPT1 (P A23G -,

252

p Bl i ks

~1pTy -1
,k=<92ﬂ pTy~1¢p

AL

-1
‘M21M11M12’

(k) _ 3
Y2 _dk)’

&1
ilA

¢
MM, A

21 11" 17
3

=1
&‘24324:\ a7l

,AU2+A1

12

)

i
4

1g

1°1°

Table A1.7

MI+CU+KU=R(%) ,
B U< dy
(k)

=0 ,
PTU

(k)

PeU = 0 ,

k=1,m
H

Coulomb friction interaction pairs

nonlinear system with the constraints presenting the

23 ptd

2. AaU =G

Bl q;+D5AU

o AR b
| 'qk-—l)_AUt (j-
i=k

t+At

= * 3 e R e
nhiere A= (Rra 1P “HPRATIG-d )5 Ry = (PUTPT)
for sliding pairs 2

SN=%§(Ft+10,t+5t)+a1,c+ﬁt’ STy paay oy s K
iteration for determining active constraints, Angﬁ, K= Tt

k

*=
-, T BT T

L% %
. T? =qk+DkAU .

K

Yo ikj sl KAy s
f

- 20,t+At

iteration for determining sliding pairs, REISleslsjl

+A

W,
%P9

e Gl

k=0,m ;

* * l)
o whereA:b;M+b;C+b;K » Byyap=Rysay - Mag+Cay+Kay)
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APPENDIX 2. METHOD FOR OBTAINING QUASISTATIC COMPLIANCE

MATmXINkTHE CASE OF SINGULAR STIFFNESS MATRIX
(G.Rozenblum, [38])

In the case of singular stiffness matrix the relation (1.19)

can't be immediately applied. In order to find an expression

Sk without obtaining the higher structural modes, the
auxiliary differential equation is considered

for

following

MU+KU-= F, cosat (A2.1)

from which the limit value of the

If the matrix K is singular, i.e.,
structure possesses rigid body d.o.f., the vector of the
of angular eigenfrequencies and the

displacement vector U is
the
squares

be

obtained at A — 0.

eigenvector matrix can

2
w

‘ 2 1
presented as o = e A& [ AgsA ,4,]
2

corresponds to the rigid-body structural modes. Substituting
variables as (1.12),

Zs

appears as zZ=(Z,
2,
vector U_ can be

. where the index "o"

the

where the modal displacement vector ~2

s the elastic component of the displacement

expressed as

U =az+a2z=] Aidiag(1/wf)AI @ Azdiag(1/wz)A; 1 Fo’ (A2.2)

and the rigid-body component of the displacement vector - as

Ur = AOzo J

(82.3)
where U = U + U, (A2.4)
Taking account for (A20:2) L iea2 ) (Aa214), " the equation
(A2.1) can be presented as
MU +MU, +KU=F

o COS xt

(A2.5)

Multiplying (A2.5) from the left-hand side by A; and

taking account upon the orthogonality condition A;MU°= A;KU°= 05
the expression of U. is obtained, substitution of which into th

e
€quation (A2.5) enables to obtain the equation
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MU, +KUz=REF, cosrt , (42.6)
where R =1 - M AOAL

Approaching the limit X — 0 , the equation (A2.6) is

obtained as

KU=RF (82.7)

Oe e

If the matrix K would be non-singular, the equations(A2.2)
and (A2.7) would enable to obtain the relation (1.19). In the
case of the singular stiffness matrix, a solution Ue of the
equation (A2.7) isn't unique. Therefore we consider one of the

U
admissible solutions Ua=[ L}, obtained from the equation
0

(A2.8)

o L]

Kl;l_ KLr- [UL] = Bk
LR N I

where the lower index "“r* at the blocks of the matrix K
corresponds to the number of rows and columns equal to the number

of rigid body d.o.f. In general, it doesn't matter ,  what
particular d.o.f. are '"fixed" in the equation. (A2.8), i.e.,

correspond to the blocks with the lower index “I'', however, the

-1
block K , should be nonsingular. Denoting Gr= > = Z WE, = oY
vector Uc is expressed as

U, =GRF, . (A2:.9)
The general solution Ue can be presented as
U= Al (A2.10)

Multiplying (A2.10) from the left-hand side by A;? and
employing the orthogonality condition A;MUQ= 0 , we obtain

%
£ =-AMGRE, (a2.11)
Substituting (A2.11) and (A2.9) into (A2.10), we obtain
U '=RGRF (A2.12)
Now from (A2.12)) and (A2.2) the compliance matrix is

expressed as

’
8y NG R

~ A, disg( ‘/wz ) 54,304 (42.13)
- §

APPENDIX 3. RELATIONS FOR STATIONARY AND TRANSIENT MOTION
ANALYSIS IN TERMS OF SLOW VARYING AMPLITUDES

A3.1 HARMONIC BALANCE METHOD

The harmonic balance method can be regarded as a special

case of the weighted residual approach applied in Chap.4.2 to the

system

MU+CU+KU-=WuU,0) + R(t) . (4.1)

The harmonic weight functions

N(t)= [ I Icoset Isinwt Icoslwt IginPat .. |

N(t)= [ I Tcoswt Isinet Icostwt Isinet ... ] -

are employed, where I- UQity matrix of the dimension equal .to the
length of the vector U, I- unity matrix of the dimension equal to
the number of constraints (rows of the matrix P), and T = 2r

. . =
The generalized amplitude vector contains the amplitudes of -
Fourier components:
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Displacements and forces are presented as truncated Fourier

series as

I
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UCt) = N(EHU, - } Uicos(k-1)et + Usin(k-1)ut ,
k
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R(t) = N(DR, = 5 Ricos(k-1)ot + Risin(k-1)et ,  (43.2)
=

=1

W(t) = N(E)W, :} Wicos(R-1)et + Wsin(k-1)wt

k=1

The component amplitude vectors are denoted as

k k k
Uk ] Uc Wk i Wc Rk ). | Rc —
5 o B | 0 kTE. (3.3

As only stationary motions of the frequency w are

. Considered, the amplitude components are obtained as a result of
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the Fourier transform
U = FE@) , W =°fFt@®) , R =FI*@®)

Assume the nonlinear interaction taking place in local zones
of the structure and present vectors and matrices in a block form
U 0

= Y v = : . (A3.4)
U V,(U,, U)

Denote through Iz the unity matrix of the dimension Ille’l2 »
where ik is equal to the length of the vector Ug . Matrices of
the dimension nxn, containing the harmonic response amplitudes
to unity harmonic excitations at the nonlinearity points denote
through gk , k=T,p , where nxn - the dimension of the equation
(4.1). Vectors P* y k=T,p each of the 1length n contain the
harmonic response amplitudes of the linear part of the structure
to the external excitation R(1).

The matrices Sk and vectors Pk are determined from the

matrix equation
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where o = (k-1)w , and the zero submatrices on the right-hand
side of the equation (A3.5) are of the dimension nxn, , where

n - length of the subvector Ui.
Consider matrices S: of the dimension n, xn, and vectors Pt
of the length n,, containing the rows of S)< and the elements of
Pk , corresponding to the d.o.f. subjected to nonlinear

interaction. Denoting

; 3 4 - 3
Uz Pz 5, 0
Uz P 8 :
UAZ = e % PAZ ¥ e g SAZ & z' i (43.6)
Uz ép 0 gP
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the equation (4.21)' reads as

U S B M Tk B (A3.7)

A2 A2 A2 2

From the equation (A3.7) immediately follows the simple
jteration formula for obtaining the solution, however, very often
it exhibits divergence.

The Newton-Raphson iteration scheme reads as follows:

i1 i _ i i
(I- SAzD X UAZ i UAZ) it _UAZ il SAzwAz i PAz ’ (A3.8)
where through D the derivative matrix D = — 22 js denoted.
al

Az
’ Taking into account that the Fourier transform as well as

..;differentiation are linear operations, their priority order can

be exchanged:

2
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oW,  OFT(W,) oW
7:}?[ ] . (43.9)
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where through FT the Fourier transform is denoted, transforming a
vector-column of time functions of the length n, into a vector of

- harmonic amplitude components of the length 2pr12 . Expanding the
relation (A3.9) we obtain

oW, oU, oW, aU,
D= FT[ = + — ] > (A3.10)
al aU al_ aU
2 A2 - 4 A2
al aﬁ
where the derivatives = 2 are expressed as
al a3l
i A2 A2
;. 1 aUZ
=[ , Icos(i-1)et , I.sin(i-1)t , ] .
aU 2 2 n2xp
A2
oty
- [...,—I (1-1)osin(i-1)et, I.(i-1)ecos(i-1 )wt,...]
aU 2 2 n2xp
A2

Explicitly the derivative matrix is expressed as
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| - ” § ; i e A3.2 NUMERICAL INTEGRATION OF TIME AVERAGED EQUATIONS.
i aw, oW, oW oW FORMULAE FOR OBTAINING DERIVATIVE MATRICES
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11 2e | = FT cos(J-1)et — —2(J-1)esin(-1)ot | :
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Bl 2 S| = FTY| — sin(J-1)et + —(J-1)wcos(J-1)wt !
11 aU; oW al al
11 Bt 1,3 = ToP 4
‘ ‘ ‘ ‘\ DJ p aUJ
| \ e
| The dimension of the equation is redur~? talking —into p
) e " r oWt (A3.14)
account that U8 =¥ = i e
{ “ At each Newton-Raphson iteration it is necessary to solve a an [ oW = aW e
‘ \ linear algebraic equation system of the dimension (2p-1 )nzx Bl BW: = IT 5 cos(J-1)wt - 5(3—1 Yesin(j-1)et ’
(2p-1 )I’lz and to carry out 1D times the discrete Fourier =
3
‘ l transform during the time interval [0,T] . Therefore the e | Ry e
‘ | g = T
! [ necessary ammount of the computational resource depends mainly
‘ upon the number of the nonlinearly interacted d.o.f. n,, rather
il than upon the dimension N of the strueture.
|
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APPENDIX 4. METHOD FOR OBTAINING STABLE CLOSED-LOOP
CONTROL SYSTEM

The expressions of feedback coefficients of the synthesized
control law contain arbitrary constant matrices G and H (see the
expressions (5.32), (5.37)). The arbitrariness of the matrices
can be employed for ensuring the stability of the system, that,
in general, isn't guaranteed by applying the synthesis method
presented in Chap.5.2.2.

For obtaining a stability condition we employ the first
Liapunov's theorem, presenting the equation (5.39) as a first
order differential equation system in terms of the variables

s = ? as
)
. 0 I
s = s =] s=Bs . (Ad.1)
-MK -M°C
For the asymptotic stability of the system (5.42) a
necessary and sufficient condition is that the real parts of the

eigenvalues of the matrix Bmwzh would be negative. In the case
of symmetric matrices K, C are symmetric, the sufficient

stability condition is that the matrices i, E would be positive
definite. However, the matrices can be symmetric only if R.= QT,
therefore we'll consider the general case.

We present B as a function of the components of the matrices

GRandl B " as ¥ B = B(gLj hj) . In order to avoid cumbersome
» 1

computations, further we restrict ourselves with the functional

relation B = B(gq). An eigenvalue problem for the matrix B reads

as follows:
[ B2 B 1 ] % DS i ut e (A4.2)

where the scalar quantities ¢, n represent real and imaéinary
parts of an eigenvalue, and vectors & and b - real and imaginary
parts of an eigenvector. 3

The problem (A4.2) has 2n solutions :jﬂﬁ’%‘bﬂ S=lien .
For the control system stability all the real parts of  the
eigenvalues £ Jj=T,7n should be negative. If an eigenvalue

with the positive real part is present, the parameters gu should
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be adjusted in order to make it negative.

the relation between ¢ and &
j

Taking on account that

is nonlinear, we emplo i

e : ; Y a gradient

minimization techniques for obtaining the necessary values &
4
J

defini i i
ining the current increments Ag,Lj direct proportional to the

9%
components of the gradient vector (% 1=T. 0, STEK)
’ ok 5 -
ag_Lj
. . a
For obtaining the partial derivatives i we employ the
°g

. . ".‘
following relations. Together with the right-hand side eigenvalue

.problem (5.43) we consider the left-hand side problem

(a+1b ) [ Bow {2 ke T ] o (A4.3)

or, what is the same,

[B’_<g+1n>1](£+1€>’=o A

8, D represent the real and imaginary parts of
the left-hand side row-vector, the eigenvalues E+1in
for the two problems.

where the vectors

coinciding

Equating to zero the real and imaginary parts of the exact
differentials of the left-hand sides of the

equations A4,
(A4.3), we obtain ( o

a(Ba
Bsa - z6a + nsb - asr + bsy + i 52 =0
ag :
a(Bb
BSb - £8b - nsa - bsr - asn + ¥, g =0
ag ;
(Ad.4)
~ v ~ ~ ~ a(aB
6aB - £6a + néb - as¢t + bén + il Sg =)
ag y
~ ~ 0 o ~ a SB
SbB - £8b - nsa - bsr - asn + e S =
ag ’
where the elements gu of the matrix G are presented as the
" vect =
‘ or g (g“, 55 me 1k,...,ghk)T. After some manipulation

upon the system (A4.4), we obtain
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P S + qdn + A sg
(A4.5)

Il

-q & + pon+Deésg=0,
A i ) ~ 2(Ba) ~ 3(Ba)
where p =bb-aa , g=ab+ba, A=a2a = »
g 8

~@(Ba)ie 1@(BD )
D=b ——+a
og ag

After eliminating &én from the system (A4.5), we obtain the

relationship between small variations of the elements of the

matrix G and small variations of the real part of the eigenvalue

as
8 =88 (A4.6)
1
where d = ————(:D q.— A p ) represents the gradient vector.
+.q
Assume 1,1 ,...,l1 being the numbers of all eigenvalues
possessing ''dangerous'" real parts, i.e., §50%- -5 p = The

gradient vectors of the real parts is presented in the space of

the parameters g,Lj as

It appears natural to expect, that a small increment

24
—-Ag Sign[;ii]of the parameter &4 value enables to decrease the

24
values of EL, if all h, r=T,T are of the same sign, i.e.;

r agu

if they are all positive or all negative.

For decreasing real parts of the 'dangerous' eigenvalues
until they become negative, the following algorithm can‘ be
employed.
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Algorithm a4.1

1. Assume &= Qe A= im L e
2. Solve an eigenvalue problem

[B(&j)-(z+1n)1]<a+1b)=o.

2. If all g, >-s, r=7,7n , go to step 9, else go to step 4.

4. For all S r=1,t , obtain the vectors

5. Select the current element &; from the vector g .

a:L
6. If all K

3 5 r:TTt are of the same sign, go to step 7,
&, .

else go to step 8.

o
. L
T. Assume gu=gJ—Ag Slgn[——:], where Ag - some positive
g .
2% i

scalar quantity, and go to step 2.
8. 1€ gﬁ is the last element of the vector g , go to step 9,

else go to step 5.

9. End.

If the application of the above presented algorithm wasn't
successful, i.e., if the values of the parameters gu ensuring
fl< g, r = ,21 haven't been obtained, the control system

8

should be modified by selecting another values of the matrices R
and (or) Q .
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